

MatSu Valley Planning for Transportation

MEMBERS

Adeyemi Alimi, ADEC
Alex Strawn, MSB **(Chair)**
Ben White, Alaska DOT&PF
Bob Charles Jr., Knik Tribe
Brian Winnestaffer, Chickaloon Native Village
Chris Bentz, Alaska DOT&PF
Crystal Smith, MSBSD
Dan Tucker, RSA Representative
Erich Schaal, City of Wasilla **(Vice Chair)**
Vacant, Public Transit Advocate
Jude Bilafer, City of Palmer
Kate Dueber, ARRC
Lawerence Smith, Trucking Industry Advocate
Randy Durham, MSB TAB
Vacant, Mobility Advocate
Tom Adams, MSB

Microsoft Teams Meeting

Join on your computer or mobile app
[Click here to join the meeting](#)
Meeting ID: 273 292 962 535 5
Passcode: fF9my6oM

Dial in by phone
+1 (689) 223-3510
Phone conference ID
954 438 135#

Agenda **Technical Committee** Tuesday, January 13th, 2025 2:00 – 4:00 pm

Meeting Location

Alaska DOT Mat Su District Office at 500 S Seward Meridian Pkwy, Wasilla, Alaska
There is limited parking at the building's main entrance; an overflow parking lot is adjacent to the south.

1. Call to Order and Roll Call
2. Consent Agenda **(Action Item)**
 - a. Approval of the January 13th, 2025, Agenda
 - b. Approval of the December 9th, 2025, Minutes
3. Staff Report
 - Staff Report
 - Stakeholder outreach and special meeting schedule-
LRSAAB – January 15th
City of Wasilla Council – January 26th
City of Palmer Council – January 27th
Chickaloon Native Village – January 28th
MSB Assembly – February 3rd
MSB Transportation Advisory Board – February 13th
4. Policy Board, November 19th Action Items
 - a. Approval of the MTP Vision, Goals, and Objectives as presented. *Motion to approve as presented (Cooper), seconded (Winnestaffer).*

MatSu Valley Planning for Transportation

- b. Approval of 26-29 SDOT&PF Carbon Reduction Program Consultation: 34464 Fleet Conversion. *Motion to amend movement to approve ADOT&PF usage of \$636,790 of MVP's CRP FFY25 suballocation for Fleet Conversion, provided that a written agreement that the funds be returned to MVP in the form of STBG funding in FFY27 be prepared by ADOT&PF.* Seconded (Winnestaffer). No further discussion, no objections. Approved.
- 5. Voices of the Visitors (Non-Action Items)
- 6. Action Items
- 7. Old Business
 - a. MTP Update
 - Formal Call for Project Nominations 1.30.2025
 - Data-driven project list from RESPEC Presentation
 - i. Existing Conditions Report for Review
 - ii. Level of Service Report for Review
 - iii. Travel Model Report for Review
 - b. FFY26-29 STIP Update Adam Bradway, Alaska DOT&PF
 - c. Alaska DOT&PF SAFEROADS initiative Adam Bradway, Alaska DOT&PF
- 8. New Business
 - a. MTP Scoring Subcommittee Nomination
 - b. Transit
 - 5307 Split Letter from ADOT&PF Commissioner Anderson
Request for MVP to provide guidance on a future policy for the 5307 split between direct recipients in small urban areas.
 - ARRC Split Letter Proposal and Presentation by Brian Lindamood-
Questions to be addressed
 - a. An explanation of the split formula proposed by the ARRC
 - b. The history of the funding split between ARRC and the Anchorage Urban Area
 - c. A breakdown of how many commuter/non-tourist passengers are served between Wasilla and Anchorage
 - d. Documentation of the total FTA funds the railroad received in FFY24, including: 5307 urban, 5307 statewide, 5337 urban, and 5337 statewide
- 9. Other Issues
 - a. Technical Committee At-large Seat Vacancy
 - Transit Advocate
 - Mobility/Bike and Pedestrian Advocate
- 10. Informational Items
 - a. Letter from ADOT&PF documenting improvements that could be made with the 3C process, STIP involvement, and usage of MPV's suballocations - Ben White, Alaska DOT&PF
 - b. Approval of FFY 2026 Highway Safety Improvement (HSIP) Funding Plan

MatSu Valley Planning for Transportation

11. Technical Committee Comments
12. Adjournment

Next Scheduled MPO Technical Committee Meeting – Tuesday, February 10th, 2026, from 2:00-4:00 pm to be held via Microsoft TEAMS and at the Alaska DOT Mat-Su District Office at 500 S Seward Meridian Pkwy, Wasilla, Alaska.

MEMBERS

Adeyemi Alimi, ADEC
Alex Strawn, MSB **(Chair)**
Ben White, Alaska DOT&PF
Bob Charles Jr., Knik Tribe
Brian Winnestaffer, Chickaloon Native Village
Chris Bentz, Alaska DOT&PF
Crystal Smith, MSBSD
Dan Tucker, RSA Representative
Erich Schaal, City of Wasilla **(Vice Chair)**
Jennifer Busch, Public Transit
Jude Bilafer, City of Palmer
Kate Dueber, ARRC
Lawerence Smith, Trucking Industry Advocate
Randy Durham, MSB TAB
Stuart Leidner, Mobility Advocate
Tom Adams, MSB

Microsoft Teams Meeting

Join on your computer or mobile app
[Click here to join the meeting](#)
Meeting ID: 273 292 962 535 5
Passcode: ff9my6oM

Dial in by phone
+1 (689) 223-3510
Phone conference ID
954 438 135#

Minutes

Technical Committee

Tuesday, December 9th, 2025
2:00 – 4:00 pm

Meeting Location

Alaska DOT Mat Su District Office at 500 S Seward Meridian Pkwy, Wasilla, Alaska
There is limited parking at the building's main entrance; an overflow parking lot is adjacent to the south.

Call to Order and Roll Call

The meeting was called to order at 2:03 pm.

Members present:

Adeyemi Alimi - ADEC
Alex Strawn - MSB
Ben White - AK DOT&PF
Brian Winnestaffer - Chickaloon Native Village
Chris Bentz - AK DOT&PF
Crystal Smith - MSBSD
Dan Tucker - RSA Representative
Erich Schaal - City of Wasilla
Kate Dueber - ARRC
Lawerence Smith - Trucking Industry Advocate
Tom Adams - MSB

Members absent:

Glenda Ledford, Mayor – City of Wasilla

Visitors Present:

Adam Bradway – AK DOT&PF
Anjie Goulding – MVP
Ben White – AK DOT&PF
Carrie Cecil – MVP
Kim Sollien – MVP

Pat Cotter – RESPEC

Luke Bowland – AK DOT&PF

Kelsey Andersen – RESPEC

Laurie Cummings – HDR

- Consent Agenda (**Action Item**)
 - a. Approval of the December 9th, 2025, Agenda
 - b. Approval of the November 4th, 2025, Minutes

Motion to approve the consent agenda and minutes (*Tucker*), seconded (*White*). No objections, no discussion. Approved.

- Staff Report
 - Staff Report
 - a. Schedule of topics

Kim Sollien presents following topics:

Vacant at large seat for Bike and Pedestrian mobility representative:

- Stuart Leidner is planning on retiring next spring and has elected to step down as the Bike and Ped mobility advocate.
- Question posed to the Technical Committee – would we like to invite individuals who have previously expressed interest? Or would we like to advertise more publicly?
- The current process for applicants consists of a one page application (who are you? What is your connection to the TC? What do you bring?)
 - The by-laws are silent on the specific methods by which we advertise positions.
- The process for review has previously been to provide any applications to the Technical Committee for review, discussion, and vetting.

Tucker suggests that we outline the process in the by-laws (or outline a policy or procedure) concerning how we advertise and for how long and capture in a policy letter to the Technical Committee.

Minimum attendance requirements:

- Do we want to set a minimum number of meetings that members need to attend?
 - Intent would be to encourage attendance and ensure that interests of represented organizations and transportation user groups are appropriately represented in discussions and decision making.
- Voices of the Visitors (Non-Action Items)

None.

- Policy Board November 19th Action Items
 - a. *Officer Election Results: Mayor Cooper, Chair, Mayor DeVries, Vice Chair, Sean Holland, Treasurer, and Bob Charles, Secretary*
 - b. *December 2025-November 2026 Policy Board Meeting Dates Motion Winnestaffer, seconded, **passed unanimously***
 - c. *Personnel Policy Update to Annual COLA policy Motion-Winnestaffer, seconded, **passed unanimously***
 - d. *Personnel Policy Update to Annual Performance Evaluations Motion-Winnestaffer, seconded, **passed unanimously***
 - e. *MTP Project Evaluation Criteria and Scoring Guidebook Approval, PB edited to nomination filter (cost cap) on the form Motion-Winnestaffer, seconded, **passed unanimously***
- Action Items
 - a. MTP Vision, Goals, and Objectives **Recommended Motion: Motion to recommend that the Policy Board approve the MTP vision, Goals, and Objectives as presented**

Move to approve the Vision, Goals, and Objectives as presented (*Tucker*), seconded (*Adams*).

Adams asked a question/made a suggestion. In the future can we include a way to distinguish if the commenter is individual or organization?

No further discussion, no objections. Approved.

- Old Business
 - a. MVP Improvement Program Scope, Schedule, and Budget update Chris Bentz, Alaska DOT&PF

Chris Bentz presented updated on projects.

- This is an update on the MVP improvement program to set aside up to \$1 mil annually to work on smaller projects that might be completed more expediently. The Policy Board had previously approved a list of 14 projects, mostly repaving with some new paving. Projects were recommended by the City of Wasilla, City of Palmer, and MSB. This read out concerns the design and review of projects. This will inform the scope, schedule, and budget of the projects.
- The DOT&PF team spent the 2025 field season looking at things required by fed/ state guidelines to ensure all projects meet standards required for use of federal funds:
 - Must clear an encroachment
 - Must look at utilities to ensure appropriate height
 - Also need to bring everything up to ADA standards
- The team did identify some ramps that need to be improved to ADA but they do not conflict with the ROW so no associated additional costs.
- On all 14 roads, 40 plus locations where utilities do not meet requirements. In process now of obtaining as-builts and checking with utilities for permits to assign financial responsibility for rectifying the issues.
 - Palmer has provided, MSB and Wasilla have not yet
- DOT&PF expect to do combined review of all projects in spring and early summer, which should be accompanied by better cost estimates.

Questions pertinent to the topic

- If the utility company determines it was the road fault/not utility then how does that get paid for?
 - If it is outside utility permit allowance, then utility pays for. If it is not, then project dollars can be used – but this would add work which would require increase in match dollars.
- How are encroachments handled?
 - In order to deal with encroachments (getting surveyed now), the actual enforcement is met out by the MSB and cities. DOT, can help support but will need confirmation of letter being sent and some response.
 - If the encroachment doesn't get addressed, DOT will have to remove it; however, this can be complicated depending on the nature of the encroachment.

b. MTP Update

- Interactive Project Map Update

Carrie Cecil presented a high-level summary:

- As of meeting time there were 56 point comments, and 62 line comments (inclusive of comments on hard copy maps from the Open house).
- Survey Monkey survey has received 16 responses so far.
- MVP will be putting a social media add and mailer out to garner more attention
 - Review Project Nomination Form, and Nomination Process
 - Existing Conditions Report 12/19/2025 Draft to MVP
 - a. Level of Service Report 12/5/2025 Draft to MVP
 - b. Travel Model Report 12/12/2025 Draft to MVP
 - c. Data-driven project list from RESPEC 12/12/2025 draft to MVP
- MVP FFY 24&25 Funding Allocations, Carryover, and FFY26 Funding Award
 - Policy Board Request: DOT reps on the PB and TC, engage their leadership in documenting improvements that could be made with the 3C process, STIP involvement, and usage of MVP's suballocations without consultation- Ben White, Alaska DOT&PF

Ben White presented a summary of the letter, which is the outcome of Technical Committee and Policy Board meetings in October.

- The letter addresses both the past programming variances that led to MVP's funds being used without notification as well as plans for carry over funds in FY26.
- Overall result is that MVP is going to walk away with more funds in FY26 (including TIFIA funds).
- DOT&PF recommendations moving forward:
 - DOT should provide written documentation of how MVP funds are intended to be programmed in advance notice where possible.
 - Add programming of carry over funds as a subject line to MPO quarterly meetings to make sure that everyone's financial programming is being addressed consistently.

- DOT should prepare an annual report of where the funds went and how they were spent.
- DOT has also added tags to funds to help track their movement through their system and will be preparing regular reports.
 - MVP FFY 24,25,26 funding and project documentation Update - Adam Bradway, Alaska DOT&PF

Adam Bradway provided a summary. As of right now MVP would get for FY26 \$12,841,600 STBG, \$2.7 mil of CRP, \$936k of TAP. Now, we have to figure out how to get this into the TIP for FY27.

- 26-29 SDOT&PF Carbon Reduction Program Consultation: 34464 Fleet Conversion Adam Bradway, Alaska DOT&PF

Adam Bradway presented the project request for consultation with MPO per federal regulation. Associated documents start on page 26 of the packet. AK DOT&PF would like to program approx. \$636,000 of Carbon Reduction Program funds to support fleet conversion. To date, MVP has not used any of the CRP funds that they received; CRP funds have specific limitations on use. FHWA has requested assurances that vehicles would be used within the MPA boundaries. The DOT's Carbon Reduction Strategy specifies the type of work that CRP funds can be spent on in AK. This will also be presented to the Policy Board next week.

Discussion:

- General consensus is that the Technical Committee agrees that the expenditure of these CRP funds would be okay but would like to request formally that MVP receive in-kind funds in the future and that this be a formal agreement with the DOT.
 - d. FFY26-29 STIP Update Adam Bradway, Alaska DOT&PF

No update, 3Cs process is on desk.

- e. Alaska DOT&PF SAFEROADS initiative Adam Bradway, Alaska DOT&PF

No new updates. This item is on the list of topics in response to a Policy Board request to keep MVP informed of updates.

- New Business
- Other Issues
 - a. Transit update

MSB has QR code posted on Valley Transit busses to assist in gathering data on experience, collecting rider comments and complaints, and also gathering info on ridership.

- Informational Items
 - a. Element Agency – MTP Video update

Kim Sollien provided brief summary:

- PB has asked for the edit to be made to statement about “inadequate planning”
- DOT communications will support the editing
- Not sure about timeframe or how the video will be edited to soften message
- Video is on the website but not on social media

- b. Community Outreach & Engagement Analytics Report

Anjie Goulding provided a high level report out on what we are seeing on across our social media and outreach platforms and how we are using these platforms to improve outreach to the community and track engagement.

- FB = 12k plus views, 60 followers
- Insta = 12k plus views, 104 followers

- a. Formal Call for Projects from agencies date pending mid-late January

Kim Sollien requests that you please get in touch if you would like to set up a separate meeting with your respective organization to discuss and review the MTP process.

- Looking to you to help us get in touch with the right people to make sure you everything you need to be able to submit projects.

Motion to extend by 5 min (White), seconded (Chris). Approved.

- a. Stakeholder outreach and special meeting schedule- letters sent
 - Technical Committee Comments

Ben White – RFP is on the street for a Glenn Highway wildlife corridor plan.

- Adjournment

The meeting was adjourned at 4:04 pm.

Next Scheduled MPO Technical Committee Meeting – Tuesday, January 13th, 2026, from 2:00-4:00 pm to be held via Microsoft TEAMS and at the Alaska DOT MatSu District Office at 500 S Seward Meridian Pkwy, Wasilla, Alaska.

December 2025 Staff Report

FFY25/26 UPWP Tasks

TASK 100 A UPWP

- Prepared the Technical Committee and Policy Board agenda and packet

Task 100 B Metropolitan Transportation Plan

- Launched the MTP Public Engagement call for projects, and the interactive comment map went live
- Hosted our first MTP public open house on Dec 3rd
- Reviewed the first draft of the Level of Service report
- Reviewed the first draft of the RESPEC data-driven project list
- Reviewed public comments on the public nomination comment map
- Drafted letter to BLM about engagement with MVP on the MTP
- Presented to the Active Transportation Coalition about the MTP
- Presented at the DOT Tribal Coordination meeting about the MTP
- Sent emails to key stakeholders requesting to present to them about the MTP during the call for projects nomination period.
- Scheduled Presentations with Chickaloon Native Village, MSB Assembly, City of Wasilla and Palmer, the TAB and LRSAAB.
- Reviewed and commented on the Existing Conditions report, Level of Service Report, Travel Demand Model, and the RESPEC project list.
- Met with the MSB GIS team and RESPEC to discuss the work flow with the project evaluation and scoring process.

TIP /Project Scoring Criteria

Complete Streets Policy

- Reviewed the Draft Complete Streets Policy

Task 100 C TransCad Modeling

TASK 100 D Household Travel Survey

TASK 100 E Transportation Improvement Program

TASK 100 F: Update and Implementation of the Public Participation Plan and Title VI Plan

- Collected all the comments that were received during the public comment period for the MTP Vision, Goals, and Objectives and worked on a response for each
- Produced a public engagement report tracking all the public engagement/traffic on social media and our website since we launched Facebook and Instagram, and the email newsletter

TASK 100 G Support Services

Budget Management

- Met with the Foraker accountant twice for monthly bookkeeping and payroll, and twice for Audit Prep

Meetings

- Attended six project management meetings with RESPEC
- Presented at the DOT Tribal Coordination meeting

Staffing

- Advertised the Communication/Office manager position
- Scheduled Interviews

Correspondence

- Received a request from ADOT&PF to edit our MTP video. Staff discussed the issues with the Board chair and responded by declining the request. ADOT&PF offered to pay for the edits. MVP staff sent the request to the Policy Board via email, and the majority of the board responded, requesting that MVP allow ADOT&PF to make the edit.

Nonprofit Filings and Reports

Organizational Documents

- Updated website

Agency Relationships

Contract Management

- Met with RESPEC to coordinate with additional staff and to reach an agreement on all the deliverables, expectations, and timelines.

Requests from the Policy Board and Technical Committee directed to the staff

Strategic Planning

- Purchased Smartsheets to help track all of MVP' projects and deliverables, and began populating overlapping and corresponding timelines.

Short-Range and Tactical Planning

Long-Range Planning

Funding / Budget

- Audit prep documentation- submitted to the auditor: funding/grant agreements, accounting and personnel procedures, back-up documentation on expenses, and board meeting minutes from the quarterly financial reports, and contract agreements.

Training

- Staff continue with the AMPO MTP and MPO 101 training
- GIS training to use the MSB GIS system

Transit Support

- Met with DOT and the MSB planning staff to discuss the FTA split letter
- Hosted Transit Roundtable meeting and discussed the Split letter and the Transit Stakeholder Group Open house

TASK 200 A MSB Public Transit Planning Support

No activity

TASK 200 B Transit Development Plan

No activity

TASK 300 Asset Management Plans

No activity

TASK 300 A MVP Sign Management Plan

No activity

TASK 300 B MVP Advanced Project Definition

- Requested an update on the MVP Improvement Program Scope, Schedule, and Budget from Chris Bentz

TASK 300 C MVP Streetlight and Intersection Management Plan

No activity

TASK 300 D Pavement Asset Management Plan

No activity

January 2026 Staff Report

FFY25/26 UPWP Tasks

TASK 100 A UPWP

- Prepared the Technical Committee agenda and packet

Task 100 B Metropolitan Transportation Plan

- Final review of the RESPEC project list
- Final review of the Existing Conditions Report, Level of Service Report, and Travel Model report
- Review of the MTP public comment map and synthesize themes

TIP /Project Scoring Criteria

Complete Streets Policy

Task 100 C TransCad Modeling

TASK 100 D Household Travel Survey

TASK 100 E Transportation Improvement Program

TASK 100 F: Update and Implementation of the Public Participation Plan and Title VI Plan

- Continue daily social media posts to encourage public engagement and new comments on our interactive map and take the survey
- Updated website

TASK 100 G Support Services

Budget Management

- Met with the accountant to reorganize direct and administrative expenses for the auditor
- Finalized Audit prep documentation- the firm requested significant documentation about our funding, accounting procedures, back-up

documentation on expenses, and board meeting minutes from the quarterly financial reports.

- Reconciled the December financials to prep for 1099 submission/report
- Drafted the 1st Quarter Report

Meetings

Staffing

Conducted interviews for the Communications and Office Manager

Correspondence

Nonprofit Filings and Reports

Organizational Documents

Agency Relationships

Contract Management

Requests from the Policy Board and Technical Committee directed to the staff

Strategic Planning

Short-Range and Tactical Planning

Long-Range Planning

Training

- Staff continue with the AMPO MTP training
- GIS training to use the MSB GIS system

Transit Support

TASK 200 A MSB Public Transit Planning Support

- Met with MSB Planning to discuss a Public Transit Stakeholder meeting
- Met with the MSB and DOT to discuss the transfer of Valley Transit bus and van titles from the DOT to the MSB

TASK 200 B Transit Development Plan

No activity

TASK 300 Asset Management Plans

No activity

TASK 300 A MVP Sign Management Plan

No activity

TASK 300 B MVP Advanced Project Definition

- ADOT&PF is working on confirming utility issues and needs

TASK 300 C MVP Streetlight and Intersection Management Plan

No activity

TASK 300 D Pavement Asset Management Plan

No activity

MTP TECHNICAL REPORTS

MVP Technical Committee Meeting, January 13, 2026

This packet presents a series of technical reports prepared for the MTP project by the consulting team. The Traffic and System Analysis Report, the Travel Demand Model Report, and the Level of Service Report collectively offer a detailed assessment of current and future transportation conditions within the MPA. These analyses provide data-driven evaluations of existing travel behaviors, system functionality, and projected demand. The reports identify system strengths and deficiencies, and will help facilitate informed decision-making, project nominations, and serve as the analytical foundation for the MTP.

These reports will be consolidated into one appendix in the MTP once they are finalized.

Outlying needs for each report include:

- Traffic and System Analysis
 - We have left room for analysis of the next model run (2050 with nominated projects)
- Travel Demand Model
 - We have left room for analysis of the next model run (2050 with nominated projects)

EXISTING CONDITIONS AND TRAFFIC AND SYSTEMS ANALYSIS

MVP METROPOLITAN TRANSPORTATION PLAN

REVISED DRAFT REPORT RSI-3716

PREPARED BY

RESPEC Company, LLC
2700 Gambell Street, Suite 500
Anchorage, Alaska 99503

IN ASSOCIATION WITH

HDR Alaska
RSG Inc.

PREPARED FOR

Kim Sollien
MatSu Valley Planning *for* Transportation
PO Box 2587
Palmer, Alaska 99645

JANUARY 2026

Project Number I1325.25001

EXECUTIVE SUMMARY

This report is a foundational document for the Metropolitan Transportation Plan (MTP). It presents the state of the transportation network, identifies current and future deficiencies, and lists projects currently underway or planned.

The key components of this document are:

- / **Current Transportation System:** An overview of the network of infrastructure and entities responsible for maintaining it, including discussions of all modes of travel, maintenance and operations, and safety.
- / **Traffic and Safety Analysis:** Evaluation of current traffic volumes and crash data.
- / **Traffic Growth Modeling:** Explanation of results from the travel demand model (TDM).

The report also includes a checklist of key federal requirements (Appendix A), a summary of the Plan Review (Appendix B), an analysis of the regional goals set forth in the Matanuska-Susitna Borough (MSB) Long-Range Transportation Plan (LRTP) compared to national goals and requirements (Appendix C), a list of projects from the MSB LRTP (Appendix D), a list of projects from other regional planning efforts (Appendix E), and the MVP Travel Demand Model Report (TDM Report) (Appendix F).

SUMMARY OF FINDINGS BY MODE

The MSB continues to be the fastest growing region in Alaska. With this growth has come issues with the transportation system such as traffic congestion, land use conflicts, gaps in necessary infrastructure, and safety concerns. Table ES-1 summarizes the key issues found in the analysis by mode and highlights strengths for MatSu Valley Planning for Transportation (MVP) to build upon with future projects.

Table ES-1. Summary of Findings

Category	Issues	Strengths
Roadways	<p>Pavement is in fair or poor condition on many Metropolitan Planning Area (MPA) roads.</p> <p>MSB road development standards are lower than comparable functional classifications within the Federal Highway Administration (FHWA) standards, resulting in underbuilt roadways.</p> <p>Pavement condition is not monitored across all roads.</p>	<p>There are several resurfacing projects in design or nearing construction that will improve pavement condition on major corridors.</p>
Bicycle/Pedestrian network	<p>Crashes happen predominantly at intersections and in the dark.</p> <p>The network is limited, including a lack of facilities near several schools.</p> <p>There are data gaps in bicycle and pedestrian volumes, which makes forecasting difficult.</p>	<p>There is a strong focus on Safe Routes to Schools.</p>
Freight	<p>The #2 freight bottleneck in Alaska is north of Wasilla.</p> <p>There are 16 at-grade rail crossings.</p>	

Category	Issues	Strengths
Transit	<p>Fixed-route service is limited.</p> <p>Coordination between service providers needs improvement.</p> <p>The low-density development pattern across the MPA makes efficient transit services difficult and leads to the need for personal vehicle transportation.</p> <p>Fixed-route service does not extend to areas of the MPA expected to see the most growth in the senior (age 65+) population.</p>	<p>Ridership has rebounded since COVID-19.</p> <p>There is demand for additional fixed-route services, particularly to Palmer.</p>
Maintenance	<p>Road maintenance is conducted by a variety of entities that have different budgets and priorities</p> <p>Responsibility for winter maintenance of nonmotorized infrastructure does not align with roadway maintenance</p> <p>The Alaska Department of Fish and Game maintains a database that catalogs anadromous streams and the culverts that pertain to fish passage, but there is no comprehensive database of culverts and their conditions for transportation planning purposes.</p>	<p>Bridges are generally in good condition.</p>
Traffic & Safety	<p>Several major corridors experience congestion during peak hours.</p> <p>High-crash corridors include Knik-Goose Bay Road, Palmer-Wasilla Highway, Bogard Road, and Parks Highway.</p>	<p>Recent projects have increased capacity and improved safety on major roads, as well as connected significant corridors.</p> <p>There are several projects in design that will address areas of congestion and safety concerns.</p>

TABLE OF CONTENTS

1.0 INTRODUCTION.....	1
1.1 WHAT AREA DOES THE TRAFFIC AND SYSTEMS ANALYSIS INCLUDE?.....	1
1.2 WHAT IS A TRAFFIC AND SYSTEMS ANALYSIS?.....	2
1.2.1 What Data Were Collected?.....	2
1.3 WHY IS THIS ANALYSIS NECESSARY?.....	2
1.4 WHY DOES THE ANALYSIS INCLUDE POPULATION AND LAND USE DATA?.....	4
1.4.1 Land Use	4
1.4.2 Population Changes.....	6
1.4.3 Economic Trends.....	8
2.0 CURRENT TRANSPORTATION SYSTEM.....	9
2.1 ROADWAYS	9
2.1.1 Functional Classification	11
2.1.2 Traffic Volumes	15
2.2 NONMOTORIZED NETWORK	17
2.2.1 Bicycle Network.....	17
2.2.2 Pedestrian Facilities.....	19
2.2.3 Safety and Network Gaps	19
2.3 TRANSIT NETWORK	21
2.3.1 Transportation Needs Assessment.....	21
2.3.2 Valley Transit.....	24
2.3.3 Sunshine Transit.....	28
2.3.4 Chickaloon Area Transit Services.....	28
2.3.5 Municipality of Anchorage Services	29
2.3.6 Other Services	29
2.3.7 Transit Challenges.....	30
2.4 REGIONAL FREIGHT NETWORK.....	30
2.4.1 Truck Freight.....	31
2.4.2 Rail Freight	32
2.4.3 Marine Freight.....	36
2.5 MAINTENANCE AND OPERATIONS.....	36
2.5.1 Pavement Management.....	38
2.5.2 Bridges	40
2.5.3 Seasonal Maintenance.....	40
2.5.4 Road Service Area Management Model	42
2.5.5 Alaska Department of Transportation and Public Facilities Maintenance	42
2.6 SAFETY	42
2.6.1 Crash History	43
3.0 TRAFFIC & SAFETY ANALYSIS	48

TABLE OF CONTENTS (CONTINUED)

3.1	CRASH ANALYSIS	48
3.1.1	Equivalent Property Damage Only Method	48
3.2	LEVEL OF SERVICE	52
3.2.1	Analysis Periods	52
3.2.2	Quality Level of Service	53
3.2.3	Assumptions	53
3.2.4	Analysis Summary	54
4.0	TRAFFIC GROWTH MODELING	59
4.1	CURRENT AND PLANNED PROJECTS	60
5.0	REFERENCES	62
	APPENDIX A. CONTENT CONSISTENCY CHECKLIST	A-1
	APPENDIX B. PLAN REVIEW SUMMARY	B-1
B.1	EMERGING THEMES	B-3
	APPENDIX C. MSB LONG-RANGE TRANSPORTATION PLAN GAP ANALYSIS: LOCAL PRIORITIES AND FEDERAL REQUIREMENTS.....	C-1
C.1	ANALYSIS	C-2
	APPENDIX D. MSB LONG-RANGE TRANSPORTATION PLAN PROJECT LIST (PLANNED, IN PROGRESS, AND COMPLETED).....	D-1
	APPENDIX E. PROJECT LISTS FROM REGIONAL PLANNING EFFORTS	E-1
	APPENDIX F. MVP TRAVEL DEMAND MODEL REPORT	F-1

LIST OF TABLES

TABLE	PAGE
1-1 Data Collected.....	2
2-1 Truck Percentage of Glenn and Parks Highway Annual Average Daily Traffic.....	32
2-2 Statewide DOT&PF Safety Performance Targets	43
2-3 Bicycle and Pedestrian Crash Data (2018 -2022).....	44
3-1 Key Intersections and Road Segments Crash Summaries (2018–2022).....	49
3-2 Average Annual Daily Traffic Two-Way General Service Volume Table for C1 and C2 Classification.....	53
3-3 Peak Hour Two-Way General Service Volume Table for C1 and C2 Classification.....	54

LIST OF FIGURES

FIGURE	PAGE
1-1 MatSu Valley Planning for Transportation Metropolitan Planning Area	1
1-2 Components of the Metropolitan Transportation Plan Development Process	3
1-3 2019 to 2050 Population Growth (Matanuska-Susitna Borough)	4
1-4 2019 to 2050 Household Population Growth by TAZ (Matanuska-Susitna Borough)	7
2-1 Road Ownership	10
2-2 National Highway System Roads Within the Metropolitan Planning Area	11
2-3 Examples of Functional Classifications in the MatSu Valley Planning for Transportation Metropolitan Planning Area	12
2-4 Roadway Classification	14
2-5 Annual Average Daily Traffic Volumes in 2024	16
2-6 Separated Paths and Infrastructure Public Facilities	18
2-7 Fixed-Route Transit Services	23
2-8 2023 Valley Transit Demand-Response Pickups and Dropoffs	25
2-9 Valley Transit Ridership, FY2019–2024	26
2-10 Matanuska-Susitna Borough Valley Transit System and Accessibility to Bus Stops	27
2-11 Sunshine Transit Ridership, FY2019–2024	28
2-12 Chickaloon Area Transit Services Ridership, FY2019–2024	29
2-13 Primary Highway Freight Network	34
2-14 Primary Highway Freight Network and Proposed Port MacKenzie Rail Extension	35
2-15 Road Service Areas Within the Metropolitan Planning Area	37
2-16 Pavement Management Report 2024	39
2-17 DOT&PF Winter Maintenance Priority	41
2-18 Number of Reported Crashes by Month	44
2-19 Fatal and Serious Crashes, 2018–2022	45
2-20 Bicycle and Pedestrian Crashes, 2018–2022	46
2-21 Heat Map – Total Injuries and Death	47
3-1 Segment Safety Analysis: Equivalent Property Damage Only Score	50
3-2 Intersection Safety Analysis: Equivalent Property Damage Only Score	51
3-3 Levels of Service Definitions	52
3-4 Level of Service – 2019	55
3-5 Level of Service PM Peak – 2019	56
3-6 Level of Service – 2050	57
3-7 Level of Service PM Peak – 2050	58
4-1 Statewide Transportation Improvement Program Projects (2024–2027)	61

1.0 INTRODUCTION

In April 2025, MVP began developing its first MTP. The MTP will serve as the long-range transportation planning document for the urbanized area within the Matanuska-Susitna region (Mat-Su), providing a strategic blueprint to help partner agencies achieve a safer, more connected, and more equitable transportation network for all modes. The MTP will be informed by past planning efforts, data about the transportation system, predictive modeling, and public input. This report builds on the Plan Review (Appendix B) by connecting past planning efforts with available data to describe the status of the transportation system and incorporate a traffic and systems analysis.

The report includes an overview of the current transportation system, an analysis of traffic and crash data, and results from a predictive traffic model. It also includes a checklist of key federal requirements (Appendix A), a summary of the Plan Review (Appendix B), an analysis of the regional goals set forth in the Matanuska-Susitna Borough (MSB) Long-Range Transportation Plan (LRTP) compared to national goals and requirements (Appendix C), a list of projects from the MSB LRTP (Appendix D), a list of projects from other regional planning efforts (Appendix E), and the MVP Travel Demand Model Report (TDM Report) (Appendix F).

1.1 WHAT AREA DOES THE TRAFFIC AND SYSTEMS ANALYSIS INCLUDE?

The MTP includes the entire MPA for MVP, containing 926.1 road miles. The MPA encompasses the census-designated urban area and is an estimation of where urbanization is expected to occur over the next 20 years. Figure 1-1 illustrates the census-designated urban area as well as the MPA boundary, representing both current and future anticipated development.

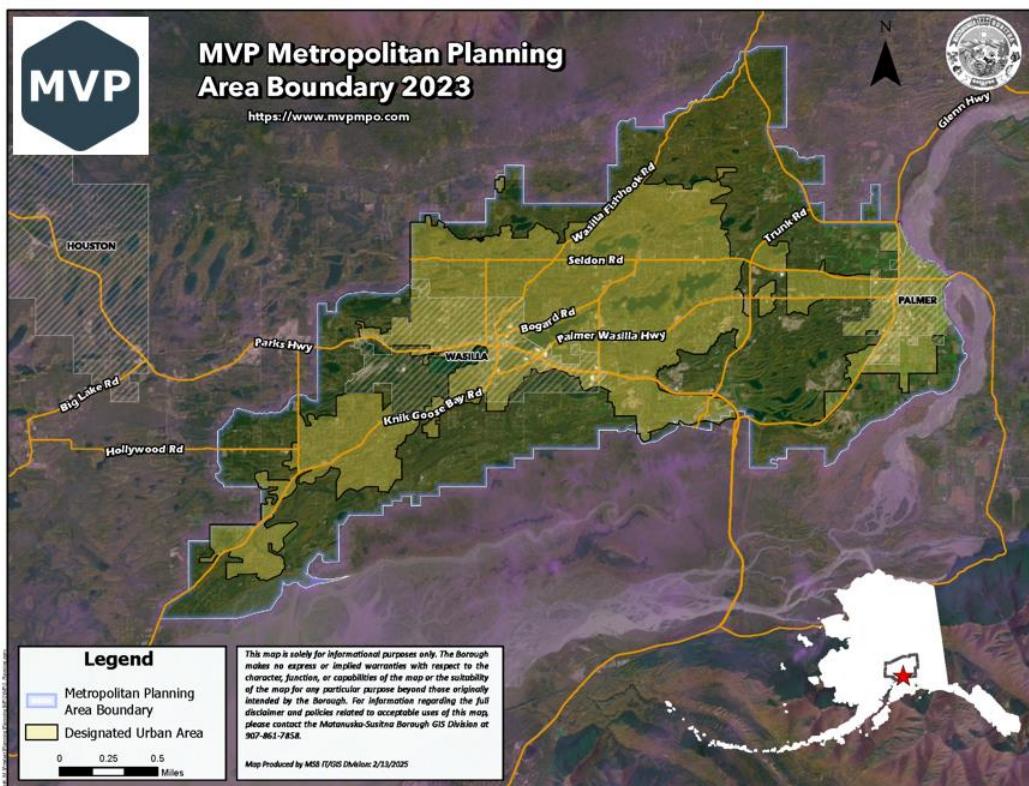


Figure 1-1. MatSu Valley Planning for Transportation Metropolitan Planning Area (courtesy of Matanuska-Susitna Borough).

1.2 WHAT IS A TRAFFIC AND SYSTEMS ANALYSIS?

A traffic and systems analysis is a data-based method of understanding a transportation network. The analysis uses data about traffic volumes, crashes, and infrastructure conditions, combined with information about ongoing and planned projects, to identify challenges and understand how the network functions. These challenges include safety issues, congestion, gaps in connectivity, maintenance or repair needs, and inequity in transportation options and access. The analysis for the MTP incorporates all modes of transportation in the MPA, including motorized and nonmotorized transportation, transit, and trucking, as well as modes that connect with the region, such as rail and marine freight, and uses a 25-year planning horizon.

By understanding how each mode functions and where gaps exist, the MTP can prioritize projects and policies that improve safety, efficiency, and quality of life for all users.

1.2.1 WHAT DATA WERE COLLECTED?

Data were collected from a variety of sources, as shown in Table 1-1.

Table 1-1. Data Collected

Dataset	Source	Year
Traffic Counts	DOT&PF	2024
Crashes	DOT&PF	2018 - 2022
Pavement Condition	DOT&PF, MSB	2023
Bridge Condition	DOT&PF	2024
Population	DOL&WD	2023
Functional Classifications	DOT&PF	2025
Transit Ridership	MSB	2025
Freight Volumes	DOT&PF	2024

DOT&PF = Alaska Department of Transportation & Public Facilities

MSB = Matanuska-Susitna Borough

DOL&WD = Alaska Department of Labor & Workforce Development

1.3 WHY IS THIS ANALYSIS NECESSARY?

The Traffic and Systems Analysis Report provides the data and analysis that form the backbone of the MTP. This document identifies system deficiencies, which will be addressed through the project nomination process. Projects will be categorized into timeframes for implementation, such as near, mid, and long term. These projects will form the core of the MTP, which will be used to create a Transportation Improvement Program (TIP). The TIP is the near-term planning document for funding transportation projects in the MPA. This analysis also informs policy and program recommendations.

This analysis also includes traffic modeling out to 2050. The model identifies future areas of concern and is an important decision-making tool for MVP and partners. Figure 1-2 shows the components of the MTP development process and how they flow together.

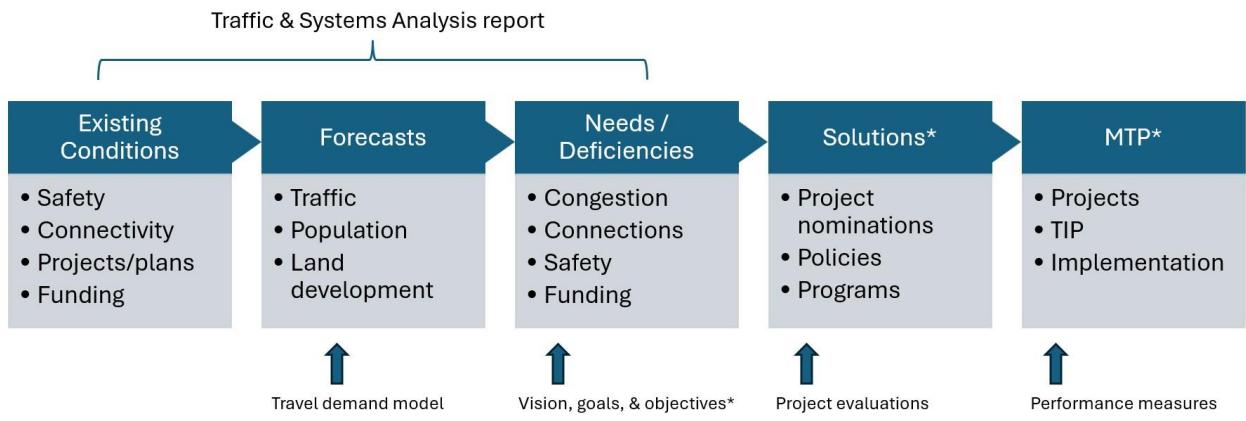


Figure 1-2. Components of the Metropolitan Transportation Plan Development Process.

1.4 WHY DOES THE ANALYSIS INCLUDE POPULATION AND LAND USE DATA?

Understanding regional transportation is not just about inventorying roads and mapping crashes. It is a process of balancing multiple, interconnected factors that shape how people and goods move across a region and requires an understanding of broader aspects of the region, such as population growth rates and patterns, land use, and economic activity and growth.

The Mat-Su has grown faster than any other region of Alaska and is anticipated to grow by approximately 1.3 percent per year through 2050, illustrated in Figure 1-3. This is a result of several factors, including lower home prices than Anchorage, larger parcels available for building, limited land use regulations, and access to recreational opportunities, among other things. Many Mat-Su residents work in Anchorage and commute via personal vehicle between the two¹.

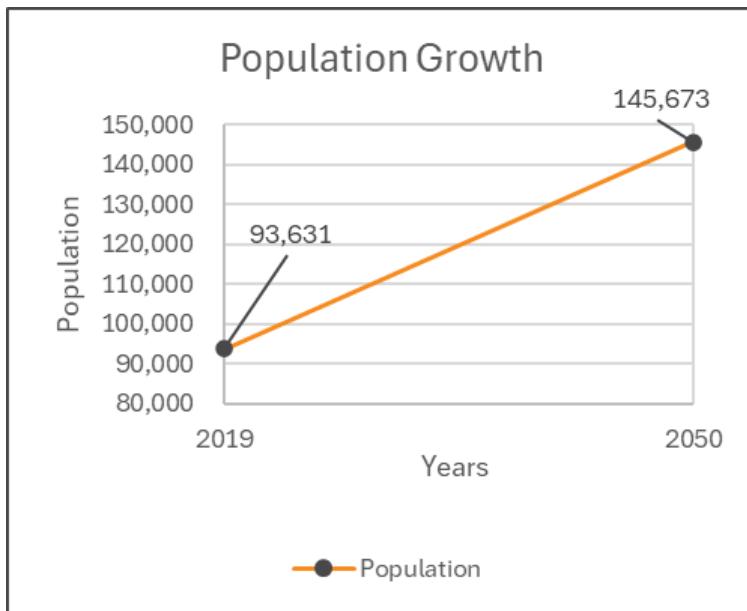


Figure 1-3. 2019 to 2050 Population Growth (Matanuska-Susitna Borough).

This growth, coupled with limited land use regulations and a limited public water/sewer system (see call-out) in the Mat-Su, has resulted in low-density residential development.

1.4.1 LAND USE

Low-density residential development is a principal driver of urban sprawl. By consuming large areas of land for relatively few residents, these developments extend the urban footprint far beyond existing built-up areas. This expansion often occurs in

WHAT DO PUBLIC WATER AND SEWER SYSTEMS HAVE TO DO WITH TRANSPORTATION PLANNING?

In Alaska, and particularly the MSB, public water and sewer systems are limited to the cities' core areas. That means any residence outside the cities must rely on a well and septic system. To protect the well water from contamination from the septic system, the Alaska Department of Environmental Conservation recommends a 1-acre minimum parcel size per septic system.

Rural residential parcels end up being 1 acre or larger to accommodate a well and septic. With these 1-acre lots, subdivisions are less densely settled and therefore less likely to be served by mass transit or live close enough to key destinations for nonmotorized transit. As a result, residents rely on personal vehicles to travel to work, school, healthcare, or other destinations.

¹ Approximately 28 percent of MSB residents currently commute to Anchorage for work [Alaska Department of Labor and Workforce Development, 2022], noting an average commute time of nearly 34 minutes [U.S. Census Bureau, 2025].

leapfrog or scattered patterns, fragmenting open space, farmland, and wildlife habitat. As development spreads outward, infrastructure such as roads and utilities must also extend farther, increasing costs for construction and maintenance.

Additionally, low-density patterns reduce the feasibility of compact, mixed-use communities where people can live, work, and shop within short distances. The lack of density limits opportunities for diverse housing options. This spatial inefficiency results in longer travel distances for daily needs and perpetuates a cycle of automobile-oriented development.

Because low-density neighborhoods are typically separated from employment, schools, and shopping areas, residents have limited alternatives to driving. Key transportation effects include:

- / **Increased Vehicle Miles Traveled (VMT).** Dispersed land uses lengthen trip distances and reduce the potential for trip chaining or nonmotorized travel. This leads to higher per capita VMT, greater fuel consumption, and increased greenhouse gas emissions.
- / **Traffic Congestion and Infrastructure Strain.** Even though population density may be low, the concentration of vehicle trips on limited roadway networks creates congestion, particularly during peak commute hours. Expanding road capacity to accommodate dispersed growth can be costly and often results in additional driving, a phenomenon known as "induced demand."
- / **Limited Transit Viability.** Low-density development patterns make public transit service inefficient and financially unsustainable. Transit systems rely on concentrated populations to support frequent service and ridership; widely spaced homes reduce demand density, leading to infrequent service or no service at all.
- / **Reduced Walkability and Nonmotorized Transportation Options.** Long block lengths, discontinuous street networks, and the absence of mixed-use development limit the practicality and safety of walking and biking. This discourages nonmotorized transportation, which has implications for public health and community livability.
- / **Energy and Environmental Impacts.** Heavy reliance on personal vehicles increases energy consumption and emissions of pollutants. The cumulative effect contributes to air quality issues and higher transportation energy costs for households.

The auto dependence fostered by low-density development also raises equity concerns. Households that cannot afford multiple vehicles face limited access to jobs, education, and services. In addition, the public cost of maintaining extended road networks often exceeds the tax revenue generated by low-density areas, creating long-term fiscal burdens for local governments or Road Service Areas (see call-out box).

DENSITY AND MAINTENANCE

A **Road Service Area (RSA)** is a taxing jurisdiction within the MSB that has been established to allow the MSB to levy taxes to pay for road construction and maintenance in that area. RSAs are managed by a group of volunteers called a Board of Supervisors. RSA budgets are reliant on the value of the property within the service area. Therefore, low-density or low-value properties result in lower funds available for road maintenance. This discrepancy in funding across RSAs leads to differences in road maintenance.

An additional factor that has led to transportation and land use conflicts is the way road sizes are determined in the MSB. The MSB Subdivision Construction Manual's (SCM) traffic thresholds are much higher than Federal Highway Administration (FHWA) and DOT&PF recommendations, which means a road that the FHWA would consider a Minor Collector was built as a Local Road in the MSB [FHWA, 2023]. As a result, many roads are less safe, less efficient, and less supportive of growth than if they had been built according to FHWA recommendations [MSB, 2022].

Low-density residential development, while appealing to homeowners and developers, generates long-lasting challenges for transportation systems. Reliance on automobile travel contributes directly to urban sprawl, traffic congestion, energy consumption, and environmental degradation. Encouraging more compact, connected, and multimodal development patterns creates more resilient, accessible, and fiscally responsible communities.

Additionally, residential subdivisions in the Mat-Su are often directly connected to arterial roads, rather than local or collector roads. The higher volume, higher speed arterials act as barriers between neighborhoods, requiring longer trips by vehicle to access adjacent subdivisions and making nonmotorized connections difficult and unsafe. Other "local" traffic, such as school buses or postal and delivery vehicles, must also use arterial roads to move between subdivisions, increasing traffic on roadways intended for longer distance travel. Frequent driveways on an arterial road can also disrupt the flow of traffic and even result in accidents when drivers are slowing down and turning off the arterial. Bogard Road is an example of an arterial with frequent driveway access: one ½-mile section has 17 parcels with direct driveway access, including six multi-family residences.

1.4.2 POPULATION CHANGES

Evaluating demographics and projected population change is essential for understanding how future transportation needs will evolve and for ensuring that long-range plans remain responsive and equitable. Trends such as household size, employment patterns, and geographic distribution of growth help planners anticipate where investments in roadway, transit, and nonmotorized infrastructure will be most effective. In particular, an aging population has significant implications for the transportation system: older adults are more likely to reduce driving, rely on safe and accessible pedestrian environments, and depend on transit, paratransit, and demand-response services to maintain mobility and independence. As the share of older residents grows, communities must address design considerations such as safer crossings, improved lighting, ADA-compliant facilities, and a greater emphasis on multimodal options. Incorporating these demographic insights into planning helps ensure that the transportation network supports public health, safety, and access for all users over time.

Similarly, shifts in the school-age population influence transportation demand and infrastructure needs in important ways. Growth in the number of children and teens can increase travel during peak periods, particularly around schools where traffic congestion, safety concerns, and parking demands often converge. More school-age residents also heighten the importance of safe routes to school, including well-maintained sidewalks, bike facilities, crossings, and traffic-calming measures that support walking and biking. School districts may need to adjust bus routing and fleet capacity, while communities may experience increased demand for youth-oriented transit services, recreational trail connections, and after-school travel options. By understanding these demographic trends, planners can better align transportation investments with the mobility, safety, and accessibility needs of younger residents and their families.

Understanding the rate of population growth and where the growth is expected to occur in relation to key destinations like schools, healthcare services, workplaces, and retail and grocery outlets allows transportation planners to anticipate what areas of the region will need to be connected and what volumes of traffic to expect.

MVP was created because the core area of the Mat-Su has reached a threshold of population and housing density. The area is expected to keep growing. Figure 1-4 provides a visual of where population growth is expected to occur between 2019 and 2050. This area encompasses the MPA and its surrounding area to show regional trends. Growth is allocated to Traffic Analysis Zones (TAZs). These geographic areas are used in the TDM to represent trip origins and destinations for the purpose of analyzing traffic at a regional level. For more details on the model, see Chapter 4.0 of this report. The travel demand report (Appendix F) explains the MVP TDM.

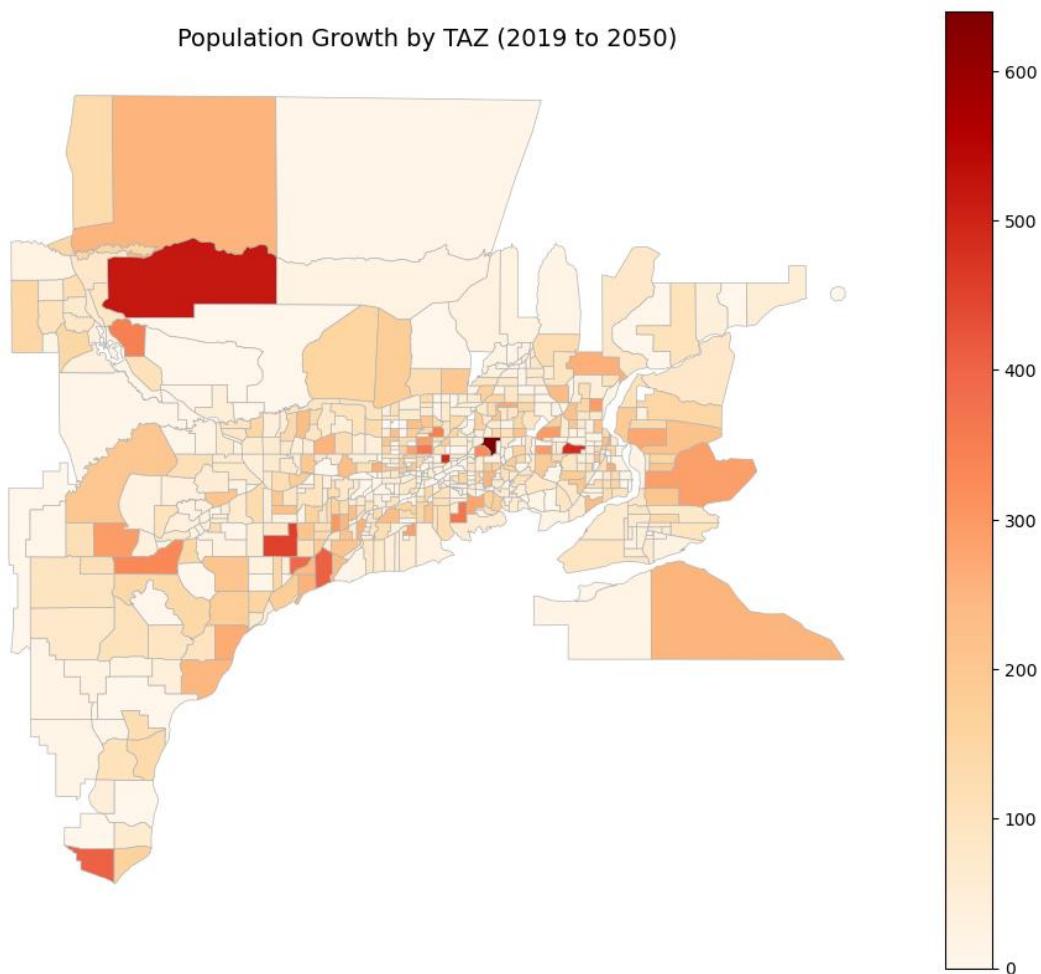


Figure 1-4. 2019 to 2050 Household Population Growth by TAZ (Matanuska-Susitna Borough).

Growth in the region is primarily concentrated in the core area and follows existing population trends, with most growth occurring around the city limits, north into Fishhook, and along the Knik-Goose Bay corridor. Approximately 16 percent (~18,500 residents) of the MSB population is over age 65. That number is forecast to increase to nearly 19 percent (~27,500 residents) by 2050 [DOL&WD, 2025]. This growth is projected to be greatest in the North Lakes, Fishhook, and Fairview areas.

Borough residents aged 18 or under make up approximately 26 percent (~30,800 individuals) of the population today. Although the total population of residents under the age of 18 will climb to more than 35,000 by 2050, the percentage will remain the same [DOL&WD, 2025]. High-growth areas for younger residents include south Knik-Fairview and areas west of the MPA.

According to the TDM Report provided in Appendix F, by 2050, the Mat-Su's population is expected to reach 145,673—a 56 percent increase from 2019—and the number of households will grow to 52,875, also a 56 percent increase. Within the MPA, population and household growth rates are similarly robust, with a 48 percent increase in population and a 47 percent increase in households anticipated by 2050. These trends underscore the importance of integrating population forecasts into transportation analysis to ensure that future infrastructure investments align with regional growth.

As the region continues to grow, understanding all modes of transportation and the roles and responsibilities of each roadway custodian is essential for coordinated planning, equitable investment, and the delivery of a safe, reliable, and connected transportation system for all users. Therefore, the analysis uses population, land use, and economic factors to ensure transportation planning decisions consider all relevant aspects of movement throughout the region to minimize congestion and improve safety and quality of life.

1.4.3 ECONOMIC TRENDS

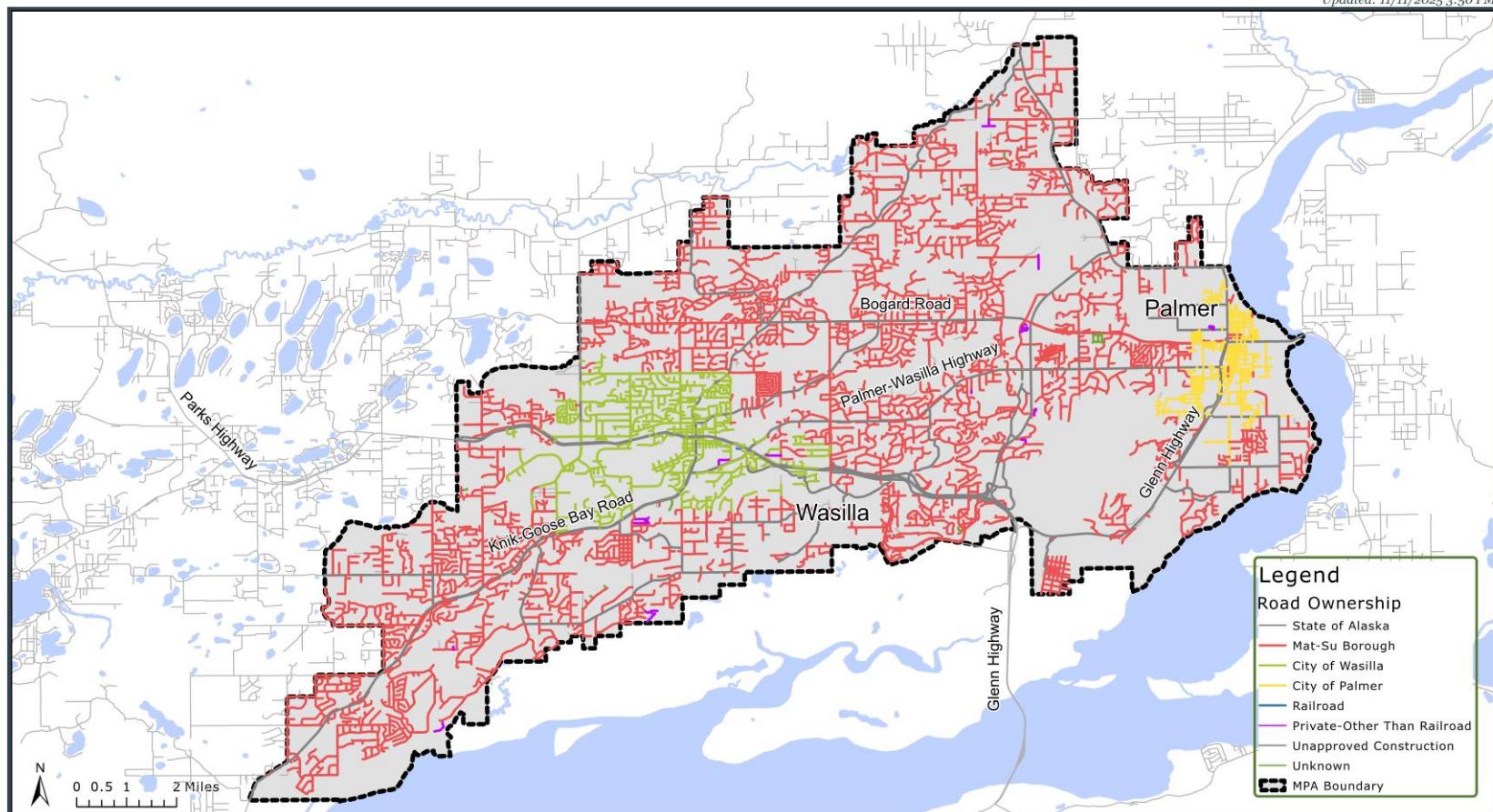
Employment growth is another critical factor shaping travel demand and system performance. The TDM Report forecasts an 11 percent increase in employment within the Mat-Su region, reaching 25,751 jobs by 2050. The broader model region, which includes Anchorage, is expected to see a 61 percent increase in employment, totaling 261,763 jobs. Notably, sectors such as transportation, warehousing, healthcare, and educational services are projected to expand significantly, further driving commuting patterns and commercial vehicle activity. Stable average household incomes and rising school enrollment figures also point to sustained economic vitality and evolving mobility needs across the region.

These demographic and economic shifts are expected to result in higher travel demand, increased VMT, and greater pressure on the transportation network. The MVP model estimates that daily VMT in the Mat-Su Borough will increase by approximately 36 percent and vehicle hours traveled (VHT) by 35 percent by 2050, with most roads continuing to operate in a state of steady flow but localized congestion persisting on major corridors.

These forecasts are just one pillar of planning for long-range transportation efforts, and must be coupled with the existing conditions of the network. By grounding transportation planning in the current and projected data, the region can better anticipate future challenges, prioritize investments, and support a safe, efficient, and resilient transportation system for all users.

2.0 CURRENT TRANSPORTATION SYSTEM

This section describes the status of the transportation system within the MPA, including roadways, nonmotorized infrastructure, and transit services that are operated and maintained by multiple entities. Understanding infrastructure conditions, each mode of transportation, and how the network functions as a system is a key step in identifying the needs that MVP must address to achieve its vision of "...creating a safe, efficient, and multimodal transportation system that fosters reliable and accessible options for all modes of travel, supports the economy and environment, and promotes healthy communities."²


2.1 ROADWAYS

Understanding the current state of the roadway network is essential for identifying system needs and guiding future transportation investments in the MPA. This section describes the functional classifications and traffic volumes within the network.

The roadway network in the MPA is not only the foundation of daily mobility and economic activity, but also a complex system managed by multiple agencies. Within the MPA, roadway ownership is distributed among several entities, shown in Figure 2-1, each responsible for maintaining and improving different portions of the network. The MSB is the largest custodian, overseeing approximately 526 miles of roadway—about 57 percent of the total network. The DOT&PF maintains 134 miles (14 percent), while the City of Wasilla and the City of Palmer are responsible for 109 miles (12 percent) and 51 miles (6 percent), respectively. The remaining road miles consist primarily of unconstructed and privately owned roads. This division of ownership shapes how roads are funded, maintained, and improved, and it influences the consistency of roadway standards and user experience across the region.

KEY ROADWAY PLANS INCLUDED IN THE PLAN REVIEW

- / Bogard-Seldon Corridor Access Management Plan (2025)
- / Alaska Statewide Transportation Asset Management Plan (2022)
- / MSB Official Streets and Highway Plan (2022)
- / MSB 2035 Long Range Transportation Plan (2016)

MVP Metropolitan Transportation Plan

Road Ownership

MATSU VALLEY
PLANNING for
TRANSPORTATION

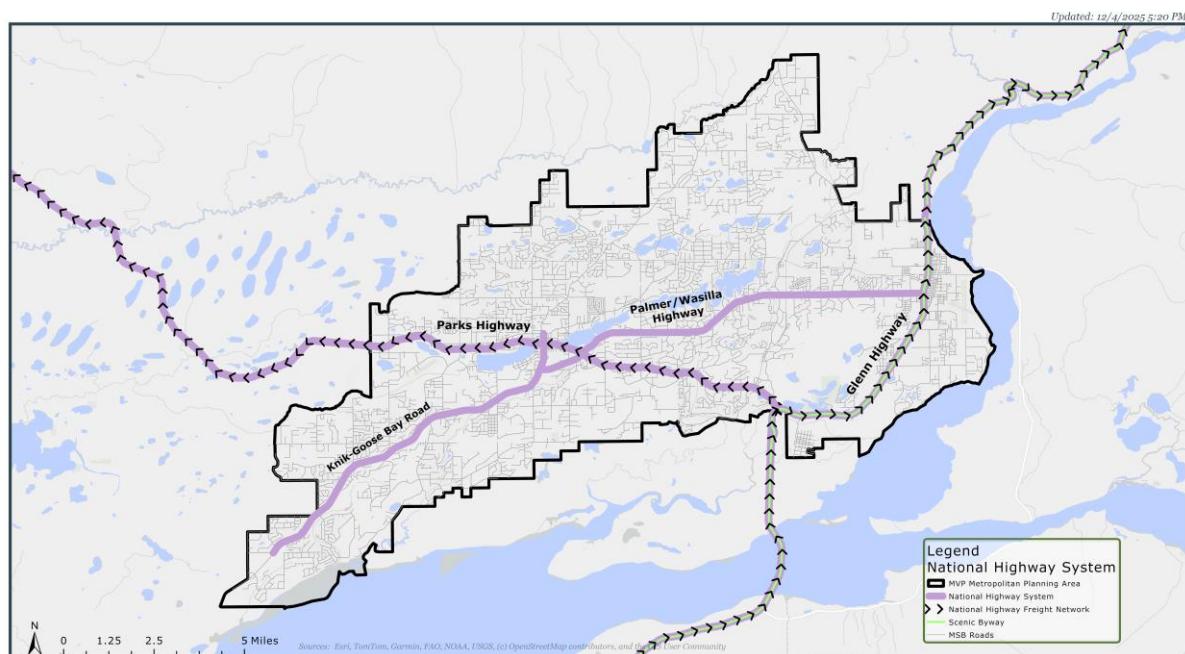

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-1. Road Ownership.

2.1.1 FUNCTIONAL CLASSIFICATION

Understanding functional classification is essential because it informs decisions about roadway design, right-of-way needs, access management, and the inclusion of nonmotorized facilities. In the context of the MTP, functional classification informs project evaluation, funding eligibility, and prioritization, ensuring that improvements align with both local and regional mobility goals. Functional classification also plays a role in the project evaluation process in determining the levels of local match required for a project using federal funding. By clearly defining the role of each roadway, the MTP can better address current needs and plan for future growth.

Additionally, the National Highway System (NHS) is a federally designated network of roads that are important to the nation's economy, defense, and mobility. In Alaska, the NHS is comprised of Interstate routes, other principal arterial routes, and routes connecting to major intermodal facilities such as airports, ports, military bases, and ferry terminals. With a few exceptions, all NHS routes in Alaska are owned by DOT&PF.³ Figure 2-2 represents the NHS roadways, National Highway Freight Network, and Scenic Byways present in the MPA. NHS roads are eligible for specific federal funding categories, such as the National Highway Performance Program (NHPP) and federal freight programs. The designation ultimately opens the door to more consistent and larger federal funding streams. The Glenn Highway, Parks Highway, Palmer-Wasilla Highway, and Knik-Goose Bay Road all have a NHS designation.

MVP Metropolitan Transportation Plan

National Highway System

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-2. National Highway System Roads Within the Metropolitan Planning Area.

³ Alaska Department of Transportation & Public Facilities re: National Highway System: https://dot.alaska.gov/dmio/tarp/NHS_AHS_SHS_info.shtml

Functional classification categorizes roadways based on their intended purpose and the type of service they provide within the transportation network. By understanding a road's functional classification, planners can evaluate whether it is operating in a way that matches its intended role. For example, an arterial street that becomes congested with frequent driveways, turning traffic, or local access needs may not be fulfilling its purpose efficiently.

Functional classification also helps guide design expectations such as roadway width, speed limits, access management, and multimodal accommodations, including factors like expected speed, trip length, traffic demands, and access density. The major categories include:

- / Interstate: Limited access, high-speed roadway designed for long-distance travel and regional connectivity
- / Arterials: Highways or major streets designed for high-speed, long-distance travel
- / Collectors: Connect local streets to arterials and help distribute traffic
- / Local Streets: Neighborhood roads that provide access to homes, schools, and businesses

Each major category typically includes subcategories like major, minor, and residential. These classes are listed in order of their hierarchy in terms of moving people. For instance, interstates are higher volume roadways intended to connect cities and towns. The primary purpose of arterials is to move people and goods across a more localized region (mobility), whereas the primary purpose of a local road is to provide access to individual properties (accessibility). Collectors provide the link between arterials and local roads. Figure 2-3 shows examples of these classifications within the MPA.

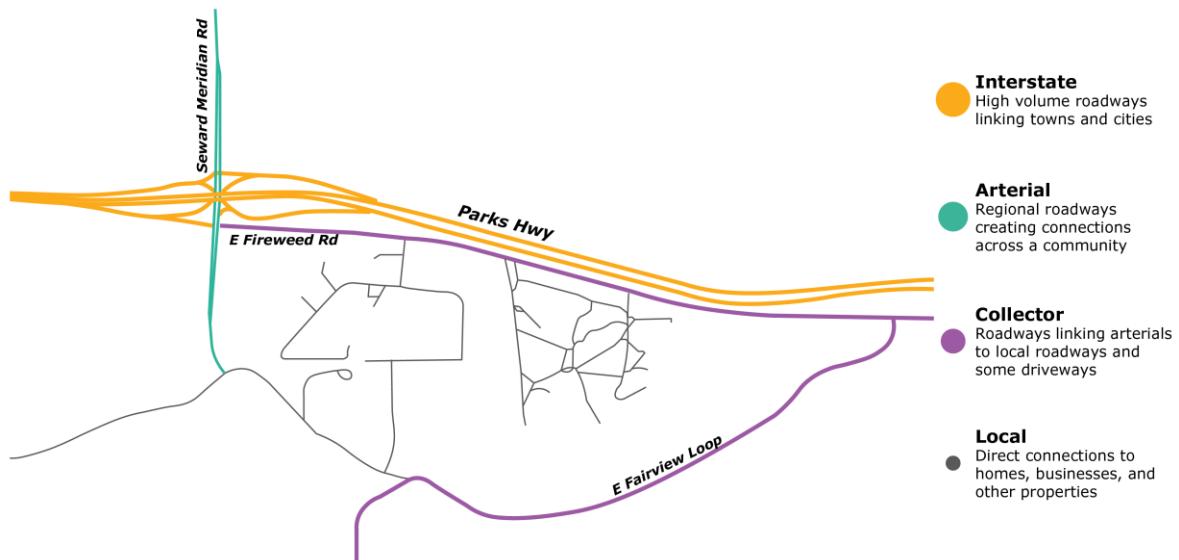
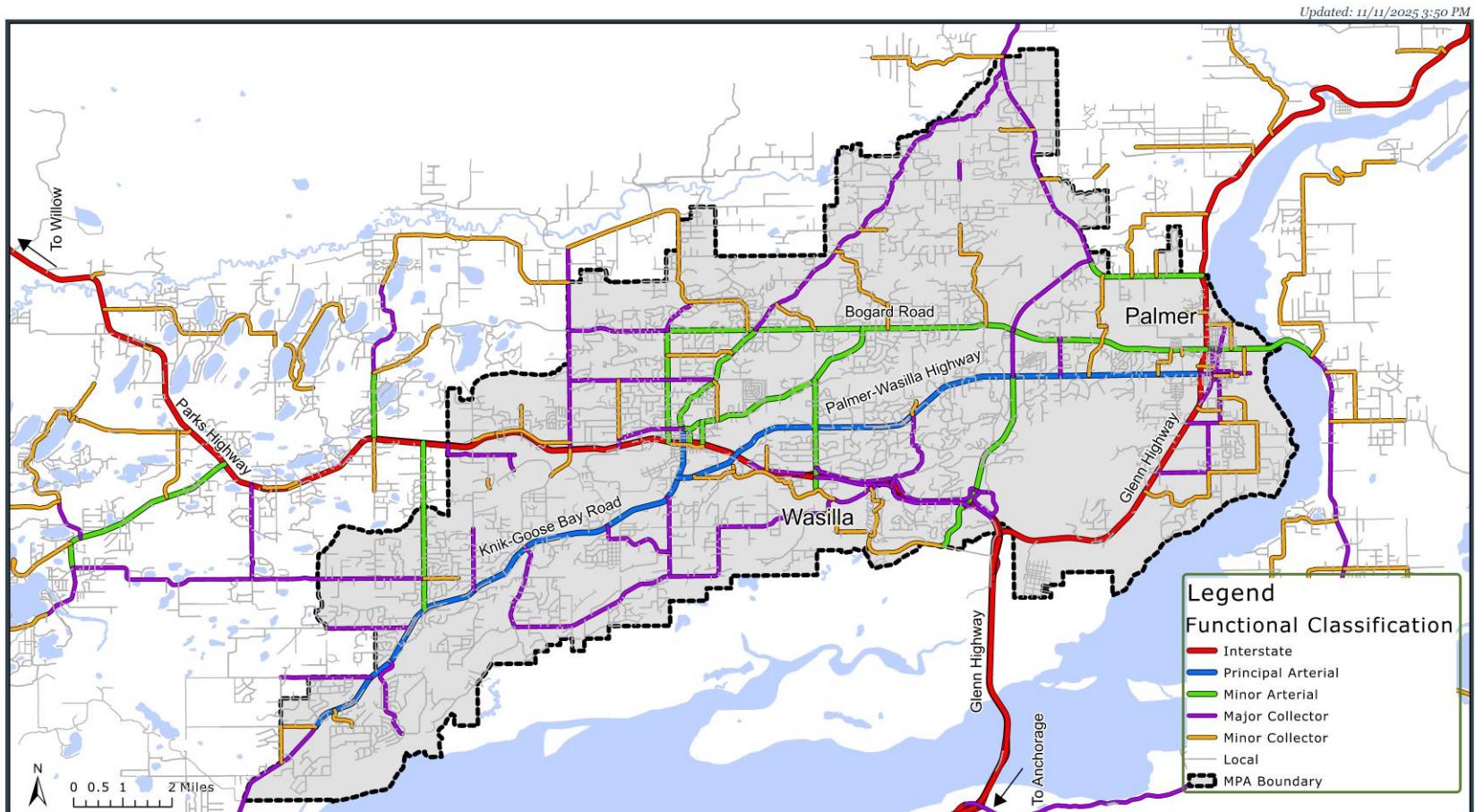



Figure 2-3. Examples of Functional Classifications in the MatSu Valley Planning for Transportation Metropolitan Planning Area.

The DOT&PF identifies six primary road classifications in Alaska: Interstate, Principal Arterial, Minor Arterial, Major Collector, Minor Collector, and Local Road (DOT&PF, 2025). Additional design and qualitative criteria may differ based on region and demographic distinction, including distinctions between rural and urban classifications and level of connectivity to the larger road system. The DOT&PF classification of the MPA is shown in Figure 2-4. DOT&PF is currently updating the functional classification for the state and anticipates that it will be available in 2026. Several roads within the MPA designated as Interstate, Arterial, or Collector by DOT&PF are part of the NHS, a network of highways that have strategic importance to the nation's

economy, defense, and mobility. These roads include the Glenn Highway, Knik-Goose Bay Road, the Palmer-Wasilla Highway, and the Parks Highway.

The 2022 MSB Official Streets & Highways Plan (OSHP) notes that many roads in the Mat-Su were built for too low a functional class. Specifically, the OSHP compares the traffic thresholds defined in the MSB SCM with the thresholds recommended by the FHWA. The SCM thresholds are much higher than the FHWA recommendations, which means a road that the FHWA would consider a Minor Collector was built as a Local Road in the MSB. As a result, many roads are less safe, less efficient, and less supportive of growth than if they had been built according to FHWA recommendations.

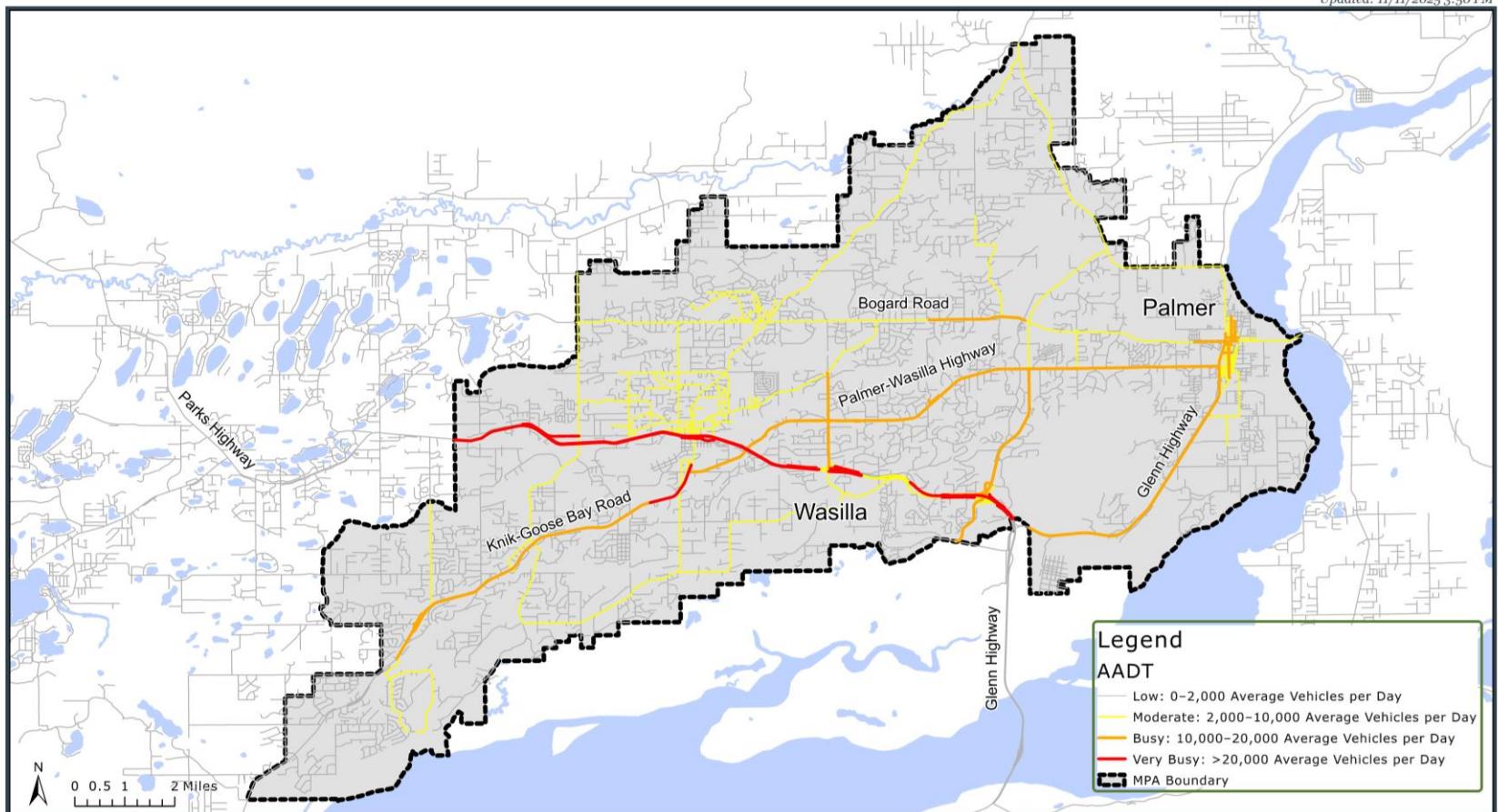
MVP Metropolitan Transportation Plan

Roadway Classification

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-4. Roadway Classification.

2.1.2 TRAFFIC VOLUMES


Traffic volumes, typically measured as Average Annual Daily Traffic (AADT), help planners understand how many vehicles use a roadway and how travel patterns change over time. These counts allow planners to identify where demand is growing, where the system may be underperforming, and where safety or congestion issues may emerge. When combined with functional classification, traffic volume data provide critical insight into whether a road is carrying the type and amount of traffic it was designed to handle. A roadway functioning far above or below its expected volume can signal a need for operational changes, safety improvements, or long-term capacity or connectivity solutions.

DOT&PF provided the AADT for most major roadways in the study area for 2024. AADT measures the typical number of vehicles traveling on a roadway segment each day, averaged over the entire year. Figure 2-5 highlights AADT values across the MPA, providing a snapshot of travel demand and helping to guide decisions about roadway improvements in the MTP. This information can be used to determine whether a road is under- or over-built and where new connections may be needed.

Considering functional classification and traffic volumes together allows planners to look beyond isolated problems and see how each roadway fits into the broader network. This helps the Metropolitan Planning Organization (MPO):

1. **Align roadway design with community goals.** Functional classification ensures that roadways support local mobility, regional travel, freight movement, and access needs in a balanced and predictable way.
2. **Identify performance issues.** Traffic volumes reveal where congestion, safety concerns, or maintenance needs may be increasing and where future deficiencies may occur if trends continue.
3. **Support project prioritization.** Understanding both the role of the roadway and its level of use helps agencies prioritize improvements where they will have the greatest impact. For example, on corridors critical to regional travel or on local streets seeing growing neighborhood development.
4. **Promote a multimodal perspective.** Functional classification also helps planners understand which roads should emphasize walking, biking, transit, or freight, allowing for targeted, context-sensitive investments.

Across the MPA, the majority of roadway volumes are as expected for their functional classification; however, some roadways will require further investigation to understand the full story of how current daily travel and classification align. For example, several roads, such as Patricia Avenue and Snow Goose Drive in the City of Wasilla, are classified as local but carry moderate traffic volumes (AADT of 3,800 and 4,470, respectively). The highest volume roads are Parks Highway, Palmer-Wasilla Highway, Knik-Goose Bay Road, Glenn Highway, and portions of Bogard Road (see Figure 2-5). It is worth noting that Knik-Goose Bay Road near its northern terminus has traffic volumes greater than Glenn Highway between Palmer and Parks Highway even though Knik-Goose Bay Road is a lower functional classification.

MVP Metropolitan Transportation Plan

Annual Average Daily Traffic Volumes: 2024

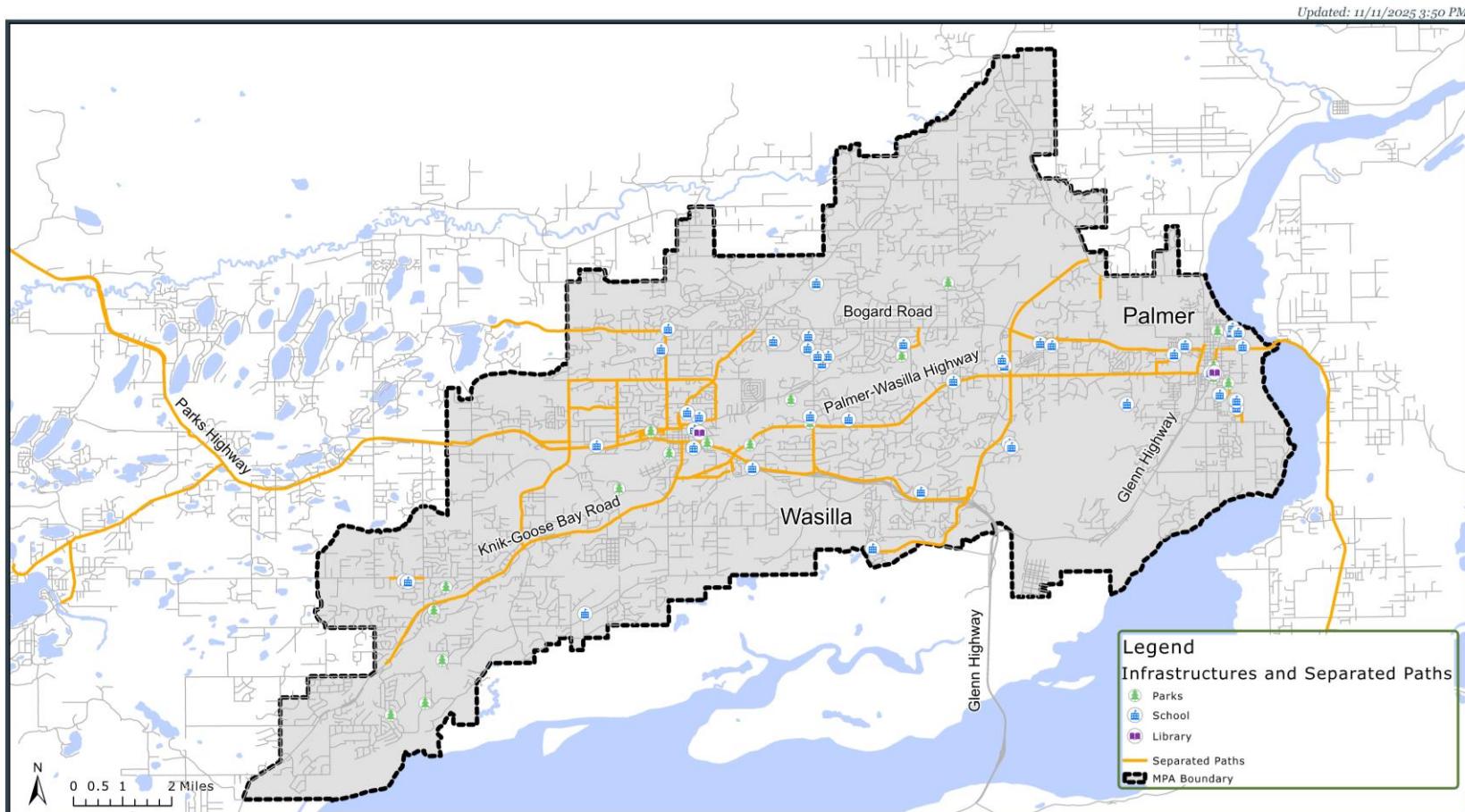
MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-5. Annual Average Daily Traffic Volumes in 2024.

2.2 NONMOTORIZED NETWORK

Nonmotorized facilities are essential components of a multimodal transportation system, offering safe, healthy, and accessible alternatives to motorized travel. In the MPA, the nonmotorized network includes separated pathways, bicycle lanes, paved shoulders, sidewalks, and shared roadways, each serving different user needs and contexts. These facilities are owned and maintained by DOT&PF, MSB, and the Cities, and connect residents to key destinations such as schools, retail centers, and employment hubs, but significant gaps remain in coverage and connectivity. Public input, including findings from the 2023 MSB Comprehensive Plan Update Community Survey and the Matanuska-Susitna Valley Smart Growth Survey [American Strategies, 2022], underscores strong community support for infrastructure improvements, particularly shoulder widening and expanded pedestrian and bicycle access to neighborhoods and schools. This section evaluates the current state of the trails, paths, and sidewalks network, identifies deficiencies, and sets the stage for targeted investments that will be identified in the MTP.


KEY NONMOTORIZED PLANS INCLUDED IN THE PLAN REVIEW

- / MSB Bicycle and Pedestrian Plan (2023)
- / Alaska Statewide Active Transportation Plan (2019)
- / Safe Routes to School Walk Zone Inventory and Recommendations (2014)

The following sections explore how bicycle and pedestrian facilities link residents to key destinations—referred to as “activity generators”—and examines the challenges posed by limited infrastructure, such as reliance on sidewalks not designed for cyclists and disconnected facilities. It also highlights the importance of dedicated bicycle lanes and shared-use paths in reducing conflicts with pedestrians and drivers, while supporting regional connectivity and rider comfort across varying roadway conditions.

2.2.1 BICYCLE NETWORK

Shared-use paths make up a significant part of the designated bicycle network in the MSB, as shown in Figure 2-6. Many of the shared-use paths run parallel to major roadway facilities and allow bicyclists to make longer regional trips while separated from high-volume and/or high-speed roadways, such as the Parks Highway, Glenn Highway, Knik-Goose Bay Road, Palmer-Wasilla Highway, and portions of Bogard Road. These facilities provide regional connectivity for commuter and recreational trips. Some of these high-volume, high-speed roadways also have a suitable shoulder for cycling, providing bicyclists with a choice of facilities to meet their comfort level and trip needs.

MVP Metropolitan Transportation Plan

Infrastructure and Separated Paths Public Facilities

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-6. Separated Paths and Infrastructure Public Facilities.

2.2.2 PEDESTRIAN FACILITIES

To promote walking, continuous sidewalks should connect neighborhoods to activity generators and separate pedestrians from vehicular traffic. A quality pedestrian network will provide for the following uses:

- / Relatively short trips (under a mile) to major pedestrian attractors, such as schools, parks, open spaces, retail centers, churches, libraries, recreational centers, and community centers
- / Recreational trips, such as jogging or hiking
- / Commute trips, where mixed-use development is provided and people choose to live near where they work
- / Access to transit (generally trips around a quarter mile to bus stops)

2.2.3 SAFETY AND NETWORK GAPS

In 2023, the MSB adopted a Bicycle and Pedestrian Plan (BPP) that recommended a range of policies, programs, and infrastructure projects to improve the safety and connectivity of the nonmotorized network in the Mat-Su. The plan noted that between 2010 and 2019, there were 103 reported bicycle and pedestrian incidents, resulting in seven pedestrian fatalities. These incidents were concentrated in the urbanized area of the Mat-Su, likely because of the higher populations and traffic volumes in Wasilla and Palmer compared to the rest of the region.

The BPP also cataloged where existing sidewalks, pathways, and bike lanes are located. Sidewalks are found in the City of Palmer and City of Wasilla, and the only designated bike lanes are also in Palmer. Separated pathways and widened shoulders are found sporadically outside city limits with many gaps in the network. The BPP recommended connecting the existing bicycle and pedestrian facilities to each other to fully connect the network to schools, neighborhoods, and economic centers.

There are 35 schools in the Mat-Su, including public and private facilities serving preschool and K-12 age groups. Bicycle and pedestrian facilities are especially important in school zones to support healthy, safe active transportation for students. The 2014 *Safe Routes to School Walk Zone Inventory and Recommendations* [PDC, 2014] plan (amended in 2017) assessed the walking/bicycling infrastructure of 19 schools throughout the MSB to provide general bicycle and pedestrian recommendations to the schools. The Safe Routes to School (SRTS) Plan provided recommendations for infrastructure within a half mile of a school. Ten of the schools included in the 2014 plan and two in the 2017 update are in the MPA. Recommendations included the addition of sidewalks, bicycle facilities, school area speed limits and traffic signs, marked crosswalks, crossing guards, and traffic signals. Additionally, MSB produced updated SRTS maps for several elementary schools in 2024, 13 of which are in the MPA. Of those 13 schools, three were identified as having no safe walking routes accessing the school (Cottonwood Creek Elementary, Pioneer

BICYCLES ON SIDEWALKS

In Alaska, bicycling on sidewalks is permitted except in business districts or where a regulatory traffic control device prohibits it. However, national guidance and best practices discourage counting sidewalks as part of the designated bicycle network because sidewalks are typically designed for pedestrians, who travel at slower speeds and have different maneuvering abilities. Narrow sidewalks with frequent obstacles make cycling uncomfortable and force the rider to travel at slower speeds.

Despite these limitations, sidewalks remain a key part of the bicycle system in the MPA because of the lack of alternatives.

Peak Elementary, and Shaw Elementary). The MSB and School District currently operate a Safe Routes committee that meets regularly to update walkability maps for MSB schools.

The 2023–2027 Alaska Strategic Highway Safety Plan (SHSP) included a Vulnerable Road User Safety Assessment, which analyzes safety performance for road users who walk, bike, and roll and recommends strategies to improve safety. This assessment noted that of all non-motorist fatalities and serious injuries resulting from roadway incidents in Alaska from 2016–2021, 10 percent occurred in the Mat-Su. This was the second highest concentration of fatalities and serious injuries, following the Municipality of Anchorage (62.9 percent). The assessment identified several high-injury corridors and intersections in the Mat-Su:

Corridors	Intersections
/ Bogard Road	/ Bogard Road and Glenn Highway
/ Evergreen Avenue	/ Evergreen Avenue and Glenn Highway
/ Parks Highway	/ Parks Highway and Palmer-Wasilla Highway

The 2025 MSB Comprehensive Safety Action Plan (CSAP), a component of the Safe Streets for All program, analyzed safety needs throughout the Mat-Su. Several of the potential safety projects in priority locations were wholly or partially within the MPA:

- / Parks Highway Corridor (Church Road to Seward Meridian Parkway)
- / Westpoint Drive & Crusey Street Pedestrian Improvements
- / Bogard Road Intersection Improvements and Separated Path (Seldon Road to Peck Street OR Seldon Road to Wasilla-Fishhook)
- / Vine Road Safety Improvements
- / Seldon Road and Church Road Intersection Improvements
- / Arctic Avenue Bicycle and Pedestrian Improvements (Glenn Highway to Palmer Airport Road)
- / Hollywood Road Safety Improvements (Big Lake Road to Vine Road)
- / Clapp Street Safety Improvements (Curtis Menard Sports Center to Laurie Avenue)
- / E. Seldon Road Safety Improvements (Windy Bottom Road to Lucille Street & Wasilla-Fishhook Road to Bogard Road)
- / Swanson Avenue Complete Street (Parks Highway to Crusey Street)
- / Green Forest Drive Safety Improvements
- / 49th State Street Separated Path

Area wide priorities included Safe, Equitable Walking Routes to School, Separated Pathway Regulatory Signs, and a Local Road Speed Management Plan.

In January 2022, a new state regulation allows the use of ATVs on most roads with speed limits of 45 mph or less. Both the cities of Palmer and Wasilla have adopted ordinances to prohibit the use of off-road vehicles on city roads, but the MSB has not, creating varying regulations throughout the MPA.

ATV use on roadways and separated pathways presents a recurring challenge for nonmotorized transportation in the Mat-Su. Many paths were not designed to accommodate motorized traffic, and ATV use creates safety conflicts with walkers and cyclists, especially on narrow or poorly lit corridors. Even pathways with signs prohibiting motorized use still see the use of ATVs and dirt bikes because of limited enforcement.

Seasonal conditions worsen trail damage and reduce usability for nonmotorized travelers, while inconsistent rules across borough, state, and private lands make enforcement difficult. These issues reduce safety, degrade infrastructure, and limit the reliability of the nonmotorized network.

2.3 TRANSIT NETWORK

Transit services are vital in offering additional mobility opportunities to residents, including those who may not drive because of age, income, ability, or choice. By offering a reliable alternative to private vehicle use, these transit systems help reduce traffic congestion and provide residents with greater access to jobs, education, healthcare, and other essential services throughout the MPA. The transit system within the MPA, shown in

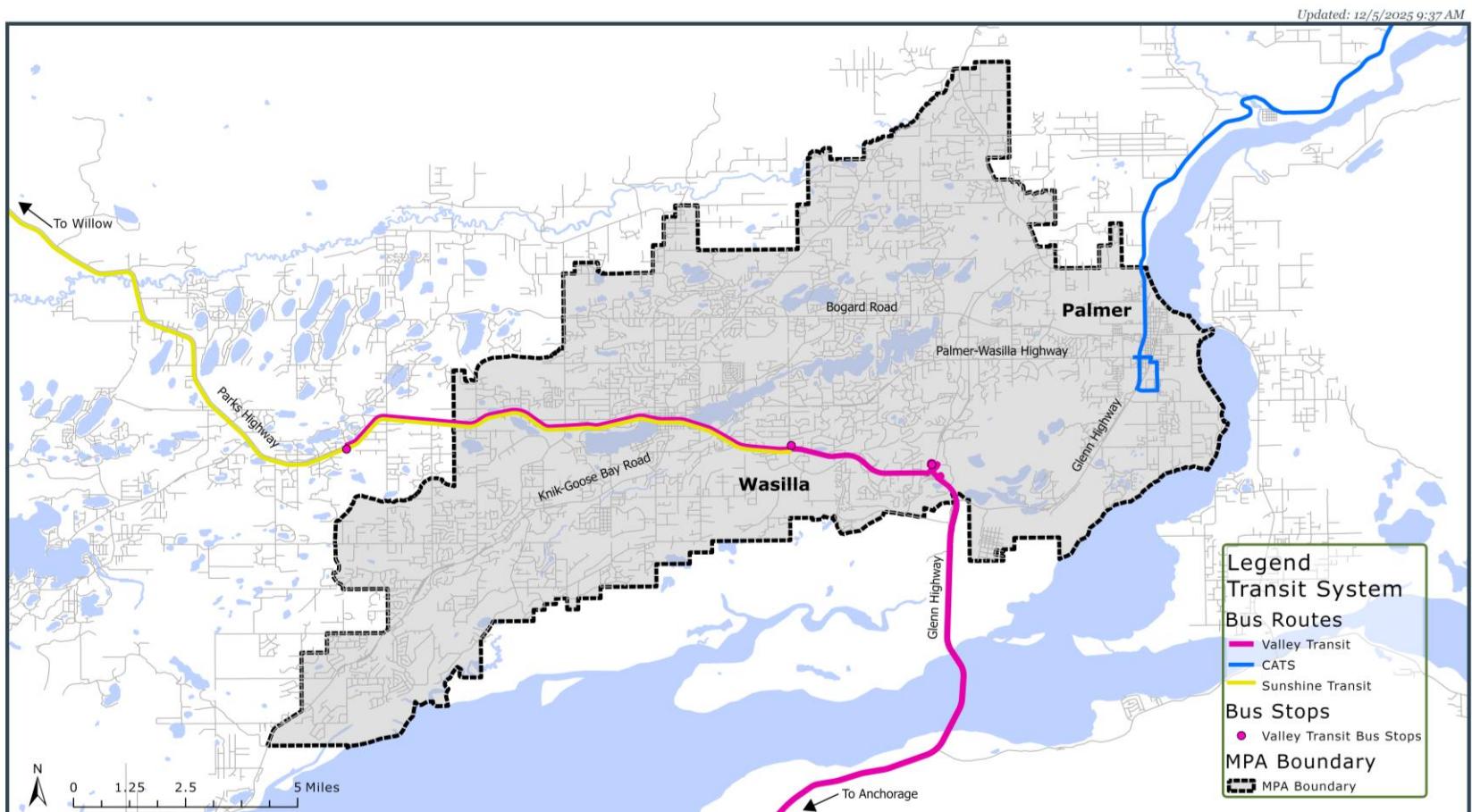
Figure 2-7, is made up of fixed-route and demand-response services. Fixed-route services operate on a specific path and have designated stops with scheduled departure and arrival times. Demand-response services do not operate on a fixed route or schedule and typically have to be scheduled in advance by the rider.

The existing transit system includes services offered by Valley Transit, Sunshine Transit, and Chickaloon Area Transit Services (CATS), as well as by the Municipality of Anchorage. Health and human services organizations, such as Wasilla Area Seniors Inc. (WASI) also provides regular rides throughout the Mat-Su, filling gaps in the current transit system for qualifying individuals, and Mat-Su Senior Services (MSSS) is currently offering limited services for medical needs only. Other services such as ride share and the Alaska Railroad are also available in the area.

The transit system within the MPA has a very limited scheduled, route-based transit service, with most rides happening on-demand. Therefore, there are very few designated bus stops or shelters across the Mat-Su. Without widespread, scheduled transit service, the connectivity of the bicycle and pedestrian network is important for ensuring that residents without a motor vehicle can get safely to their destination. If route-based transit is developed in the future, it will be important to ensure that there are connections to nonmotorized facilities.

2.3.1 TRANSPORTATION NEEDS ASSESSMENT

The *Matanuska-Susitna Borough Coordinated Human Services Transportation Plan* identified issues with the current MSB transit system [Socius Amica LLC, 2023]. Five key themes emerged regarding needs and gaps with MSB's transit system: coordination and collaboration, access to key destinations, regional transportation needs, education and awareness, and funding.


1. **Coordination and Collaboration.** Coordination between stakeholder agencies⁴ is lacking and there are gaps in fixed-route service, especially between Wasilla and Palmer. However, the ability to increase available service has been hindered by driver shortages and retention challenges, as well as issues with education, outreach, and service costs.
2. **Access to Key Destinations.** There are not sufficient transportation options for those without vehicles to get to work or to connect major population centers such as Wasilla to Palmer or the MSB

⁴ Stakeholder agencies included public transit providers, Tribal entities, DOT&PF, human service organizations, health agencies, education entities, and MSB and Anchorage Metropolitan Area Transportation Solutions.

KEY TRANSIT PLANS INCLUDED IN THE PLAN REVIEW

- / Matanuska-Susitna Borough Coordinated Human Services Transportation Plan (2023)
- / The Economic Value of Public Transit in Alaska Study (2022)

to Anchorage. Reliable transportation to access healthcare, especially for veterans and Tribal elders, was also noted as a significant need.

MVP Metropolitan Transportation Plan

Transit System

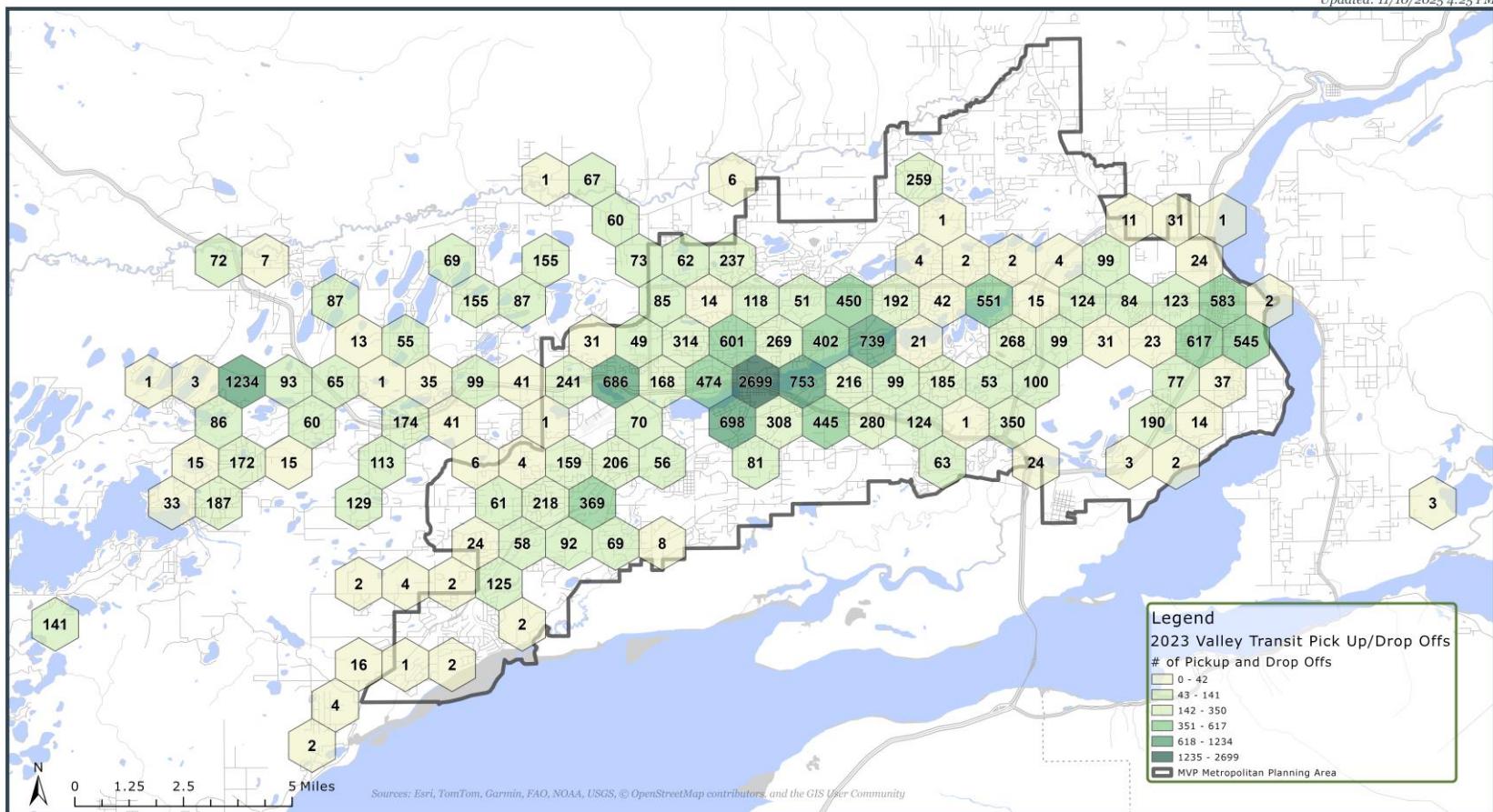
MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-7. Fixed-Route Transit Services.

3. **Regional Transportation Needs.** The transit service must address gaps to serve vastly different needs in urban and rural areas of the Mat-Su, while also meeting increasing demand for a rapidly growing region with a population spreading farther out from city centers. Creative solutions need to be developed where fixed-route transit is not feasible, such as developing park-and-rides (accessible by multiple modes of transportation) for transport between the Mat-Su and Anchorage.
4. **Education and Awareness.** Agencies responsible for transit lack resources to collect and build off a representative sample of community feedback, especially regarding Tribal needs. Additionally, stakeholder agencies require educational opportunities to ensure they are aligned with best practices and available funding and resources.
5. **Funding.** Urban and rural services providers need funding to purchase new vehicles, hire and retain drivers, expand services, and develop capital projects.

The *Matanuska-Susitna Borough Coordinated Human Services Transportation Plan* included a public and stakeholder involvement process where residents expressed a desire for commuter bus service from Knik-Goose Bay Road to Anchorage and additional fixed-route transit in the MSB Core Area, such as a route connecting Palmer, Wasilla, Mat-Su Regional Medical Center, and University of Alaska Anchorage Matanuska-Susitna College.


2.3.2 VALLEY TRANSIT

Valley Transit is a nonprofit transit service that supports a variety of public transportation needs across the Mat-Su. Services include both commuter and demand-response transit options, connecting residents to employment centers, essential services, and other daily destinations.

Valley Transit was previously eligible for the Federal Transit Authority's (FTA's) 5311 Rural Transit Funding covering operating costs. However, the core area's recent designation as an urbanized area (UZA) changes FTA's funding allocations. Transit services within the UZA are not eligible for FTA 5311 funds (MSB n.d.). FTA 5307 Urban Transit funding must be used, but these funds cannot be distributed directly to a nonprofit organization. The MSB has been designated as the direct recipient of 5307 funds, which requires a 50 percent match from the MSB for operating expenses and a 20 percent match for capital expenses (MSB n.d.). FTA 5311 funds can still be used outside the UZA.

The fixed-route commuter services operate during peak hours with limited stops between communities such as Big Lake, Meadow Lakes, Wasilla, and Anchorage. Valley Transit's demand-response service provides transportation throughout much of the Valley, including Houston, Big Lake, Meadow Lakes, Wasilla, Knik-Goose Bay, Fairview, Port MacKenzie, Palmer, and the Butte. This service, open to the general public, is reservation-based and offers fares using a zone system.

Valley Transit has experienced rapid growth to keep up with the population increase in the MSB. The provider experienced a drop in transit ridership after 2019 associated with the COVID-19 pandemic, with total ridership approaching pre-pandemic levels in FY 2024, as shown in Figure 2-9. Demand-response service usage has surged to more than double the pre-pandemic ridership, while commuter ridership continues to grow to meet previous levels. The 2023 pickups and dropoffs for the demand-response service are shown in Figure 2-8.

MVP Metropolitan Transportation Plan

2023 Valley Transit Demand Response Pickups and Drop Offs

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-8. 2023 Valley Transit Demand-Response Pickups and Dropoffs.

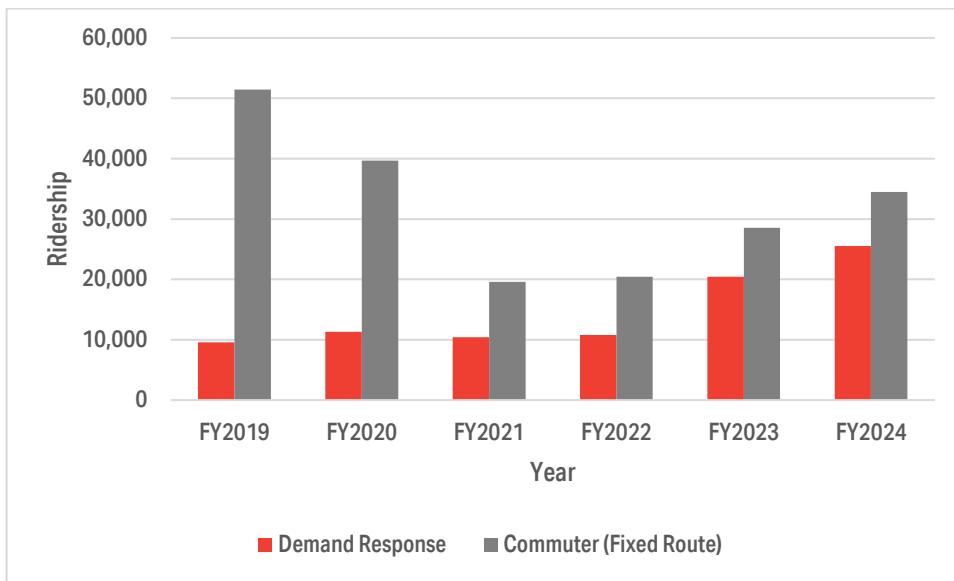
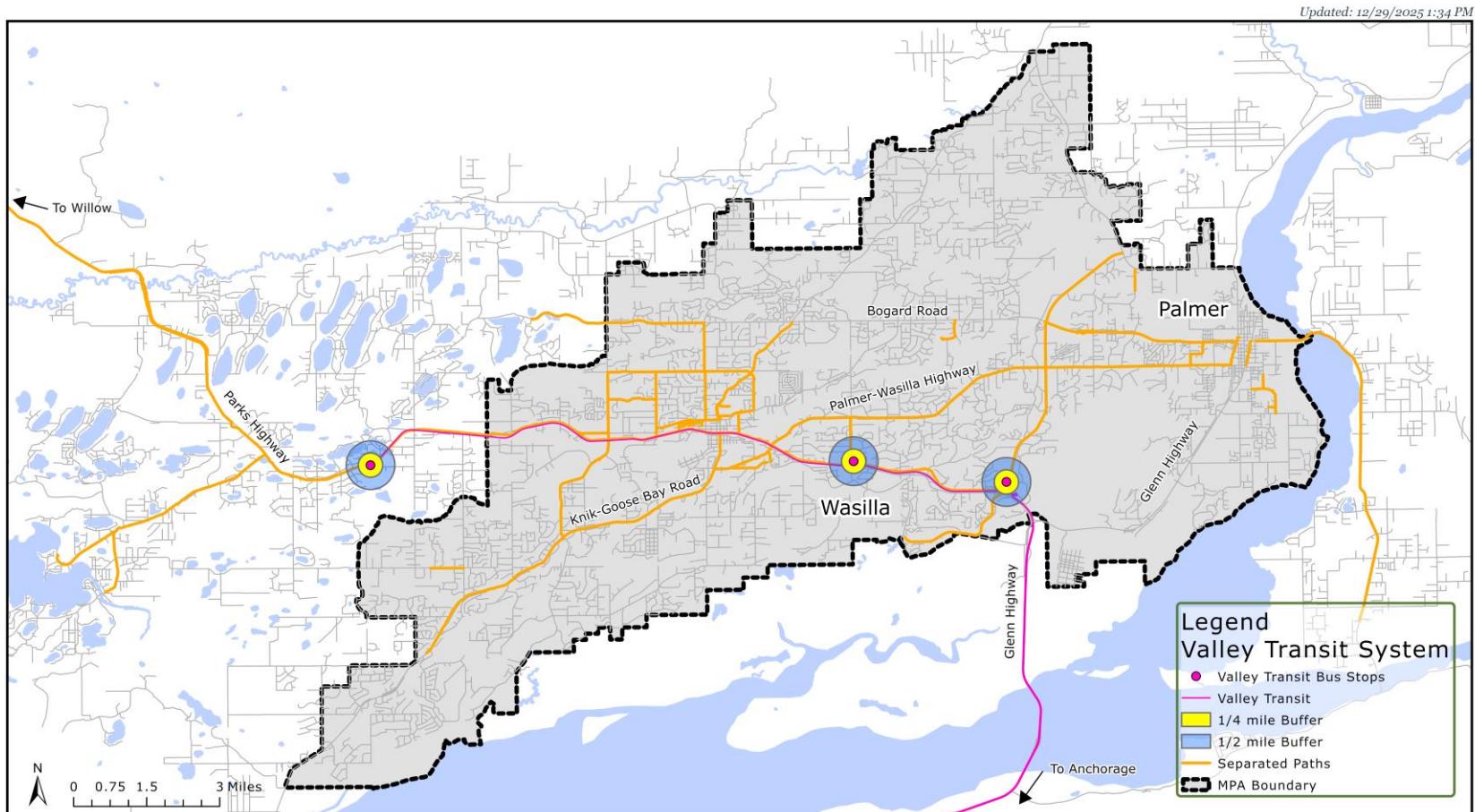



Figure 2-9. Valley Transit Ridership, FY2019–2024.

Total Valley Transit operating funds expended in 2024 were \$2,104,485, and fare revenues were \$203,371. Seventy-two percent of operating funds were provided by the federal government, 18.4 percent were provided by the local government, and 9.7 percent were generated from the service [FTA, 2024].

According to the 2023 Coordinated Human Services Plan, people expressed an interest in additional commuter service to Anchorage and a need for a fixed-route service that connects to the government office in Palmer. Figure 2-10 shows the current extent of Valley Transit's fixed-route service.

MVP Metropolitan Transportation Plan

MSB Valley Transit System

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-10. Matanuska-Susitna Borough Valley Transit System and Accessibility to Bus Stops.

2.3.3 SUNSHINE TRANSIT

Sunshine Transit is a rural service that operates deviated bus route and demand-response transit service. Within the MPA, Sunshine Transit offers pick-up locations at Fred Meyer, Walmart, and 3 Bears. The Sunshine Transit service area includes Upper Susitna Valley communities outside of the MPA, including Talkeetna, Trapper Creek, Willow, Caswell, and Houston. Sunshine Transit creates a link from rural communities to Valley Transit in Palmer and Wasilla, which allows riders to access Valley Transit's connections to Anchorage.

Figure 2-11 shows Sunshine Transit Ridership between 2019 and 2023, which shows a decrease following 2019 that has rebounded and surpassed pre-pandemic levels.

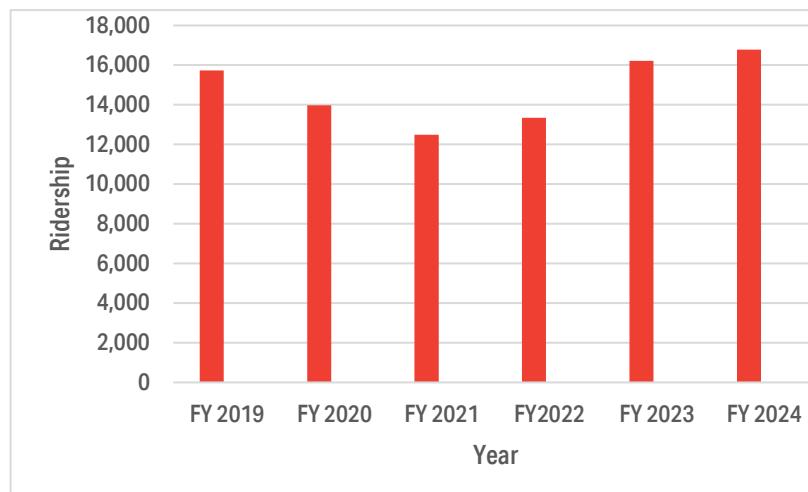


Figure 2-11. Sunshine Transit Ridership, FY2019–2024 [FTA, 2025].

The Sunshine Transit fleet operates 20 revenue vehicles and 2 service vehicles [FTA, 2024]. Total operating expenses recorded in 2024 were \$1,257,731 and fare revenue were \$139,288, with 71.6 percent of operating funds provided by the federal government and 11.1 percent of funds directly generated by the service.

Challenges experienced by Sunshine Transit include a need for additional vehicles and drivers to be able to serve more of the MSB.

2.3.4 CHICKALOON AREA TRANSIT SERVICES

CATS is a nonprofit transit service offered by the Chickaloon Village Transportation Department through an FTA formula program. The demand-response transit system provides service primarily to the Palmer, Wasilla, and Sutton areas (MP 70 to MP 40) and operates weekdays. CATS creates a link from rural communities to Valley Transit in Palmer and Wasilla, which allows riders to access Valley Transit's connections to Anchorage. All residents in the service area are eligible to use the service [Socius Amica, 2023]. CATS' fleet includes a 2021 Ford Transit all-wheel drive vehicle with seating for 11 people [Friend, 2021]. According to the FTA, CATS' fleet also includes a cutaway, minivan, and sports utility vehicle that are not in a state of good repair [FTA, 2022]. As shown in Figure 2-12, CATS ridership has returned to pre-pandemic levels in FY 2024.

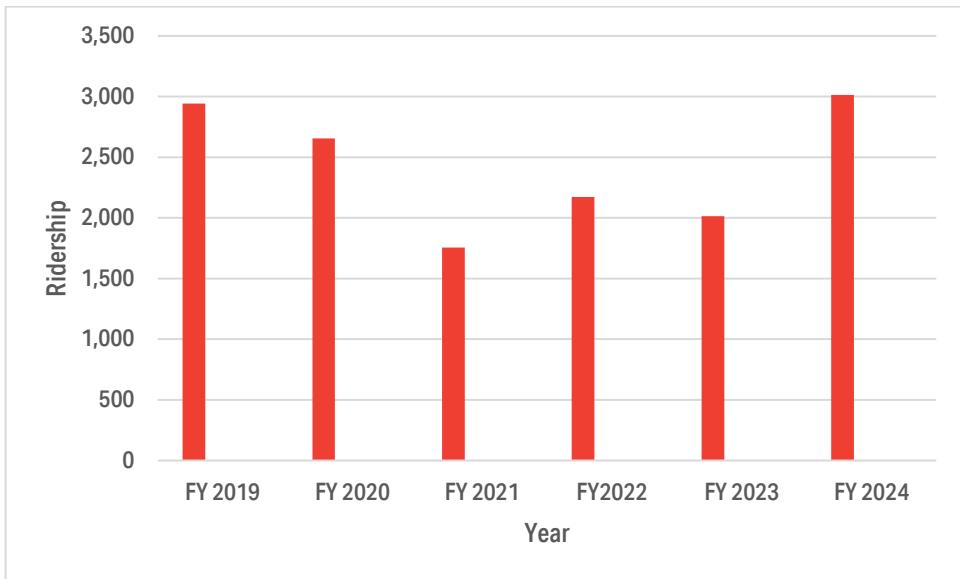


Figure 2-12. Chickaloon Area Transit Services Ridership, FY2019–2024.

In 2024, CATS' total operating funds expended were \$143,856 and fare revenues were \$3,944, with 96.6 percent of operating funds provided by the federal government and 2.7 percent of funds generated by the service [FTA, 2024].

2.3.5 MUNICIPALITY OF ANCHORAGE SERVICES

The Municipality of Anchorage's (MOA's) Public Transportation Department provides RideShare vanpooling services. The program provides area residents vanpooling options for access to employment in Anchorage. The majority of the riders using this service are MSB residents commuting to Joint Base Elmendorf-Richardson.

2.3.6 OTHER SERVICES

MSSS is a Medicaid Waiver (CHOICE) Program that offers transportation for qualifying individuals, such as those who are at least 60 years old or who are eligible for the Home and Community-Based Services Waiver Program or Medicaid. The program provides in-house demand-response services (MSSS 2025). In 2022, MSSS provided transportation services to 109 individuals for a total of 1,457 trips [Socius Amica, 2023].

The Wasilla Area Seniors, Inc. (WASI) Transportation Program is a Medicaid CHOICE Waiver Program and TriWest Healthcare Alliance service that offers demand-response transportation to qualified individuals, such as those older than 60 years old and veterans, for medical appointments, grocery shopping, or other critical needs. Between July 1, 2022, and June 30, 2023, the program provided 8,308 rides to 168 people [Socius Amica, 2023].

Ride-sharing services like UberPOOL and Lyft Line are also available in the MPA when traditional transit is less frequent, in addition to traditional cab services.

Passenger rail service exists in the MSB. Passengers can ride between the new Wasilla depot and Anchorage or Fairbanks. The schedule varies depending on the season with daily service during the summer and less frequent service during the winter. However, because of the cost of travel and schedule, this service is not

typically used by commuters. This passenger service is mostly used for recreational/tourism travel. In addition, the Alaska Railroad Corporation (ARRC) provides service to the State Fair Depot during the Alaska State Fair. There has also been interest in pursuing commuter rail service between Wasilla and Anchorage.

2.3.7 TRANSIT CHALLENGES

One challenge faced by Valley Transit that limits their ability to offer more service is the lack of operational and capital funding. Like other transit providers across the United States, ridership has not returned to pre-pandemic levels, which has resulted in lower fare box collections. Expenses continue to rise because of inflation, increases in labor prices and supply chain disruptions. This has impacted their ability to purchase new vehicles and hire drivers. While the agency seeks to increase its demand-response services, it does not have enough vehicles [Socius Amica, 2023]. For example, in 2023, they received a new fleet of buses for their commuter service that were anticipated to arrive in 2022. Other transit providers face similar funding challenges.

Valley Transit has also been hindered from expanding its fixed-route services because of land use and development decisions not occurring in a manner that would increase transit service or ridership. For example, there are no adopted plans or policies to increase density around bus stops, or provide easy transit access to commercial/employment districts. Other issues such as infrequent service, long waits for transfers, and frequent delays are reasons people do not choose to use transit.

The lack of road powers in the MSB means it is unable to use area wide tax revenue for transit infrastructure such as bus stops [Socius Amica, 2023]. Bond funding can be used; however, voters typically prioritize road projects over other modes [Socius Amica, 2023].

The low-density nature of the Mat-Su Valley also limits transit ridership. In general, people are willing to walk approximately 0.25 to 0.5 miles to a bus stop. The distance people are comfortable walking also varies based on many factors, including weather, the pedestrian infrastructure (presence of sidewalks/trails, lighting, etc.). As Figure 2-10 shows, the majority of the MPA area is not within walking distance of a bus stop. Bicyclists are typically willing to travel a little further. All three park and ride areas have secure bike parking, and the Seward Meridian location can be accessed by a pedestrian pathway, however, it is on the opposite side of the street and there is no pedestrian safety infrastructure in place.

2.4 REGIONAL FREIGHT NETWORK

Goods and supplies transported between Alaska and the Lower 48 are distributed to the MSB via truck, rail, and marine freight, often using a combination of these methods. MSB's freight system discussed in this section is important not only for its role in transporting goods between the MOA and the MSB, the two most populous areas in the state, but also for the freight system's role in providing a connection from Anchorage to Fairbanks and the communities in between.

KEY FREIGHT PLANS INCLUDED IN THE PLAN REVIEW

- / Alaska Statewide Freight Plan (2022)
- / Port MacKenzie Business Development Strategic Action Plan (2021)
- / Alaska State Rail Plan (2017)

Trucking serves both long-haul and local delivery, and rail service provides long-haul and very large freight transport. Marine freight enables the movement of cargo outside of the state, while also serving as a key link that connects with trucking and rail systems for local and long-haul delivery within the state.

2.4.1 TRUCK FREIGHT

Truck freight transported through the MSB includes goods and supplies transported between Anchorage and Fairbanks, as well as local delivery in the MSB. The major routes for hauling goods to, from, and through the MSB by truck freight are the Glenn Highway and Parks Highway. Both highways are considered Primary Highway Freight System (PHFS) routes used by commercial trucks to deliver supplies and freight [DOT&PF, 2022]. The PHFS includes those highways in the National Highway Freight Network that are identified as the most critical highway portions in the U.S. freight transportation system [FHWA, 2025]. Additionally, the Palmer-Wasilla Highway between the Parks Highway and Glenn Highway and Trunk Road between the Parks Highway and Palmer-Wasilla Highway are proposed Critical Urban Freight Corridors (CUFCs) [DOT&PF, 2022]. Figure 2-13 shows the existing freight network truck traffic volumes.

The Glenn Highway serves as the only primary road connection between the MOA and the MSB as well as provides a connection to the Parks Highway [DOT&PF, 2022]. The 35-mile section of the Glenn Highway between Anchorage and MSB serves up to 2,000 trucks per day. The Parks Highway is the primary north-south link between Southcentral Alaska and Interior Alaska, with supplies and freight transported from Anchorage through MSB to Fairbanks and other communities. The highway route serves more than 200 trucks per day and has a designated safety corridor from Wasilla to Houston [DOT&PF, 2022]. A large amount of cargo that is transported on the Parks Highway is destined for the Trans-Alaska Pipeline and other North Slope and Prudhoe Bay developments.

Table 2-1 shows the percentage of truck traffic relative to the total AADT recorded in 2024 on the Glenn and Parks Highway within the MPA.

The Statewide Freight Assessment (SFA) noted the Parks Highway (both directions) through Wasilla is listed as the No. 2 bottleneck for freight. This is due to freight only having one way in and out of Wasilla, with an average of over 200 trucks per day traveling through the Mat-Su alongside vehicle travel. The SFA also noted that 251 truck crashes occurred between 2013 and 2017 in the MSB.

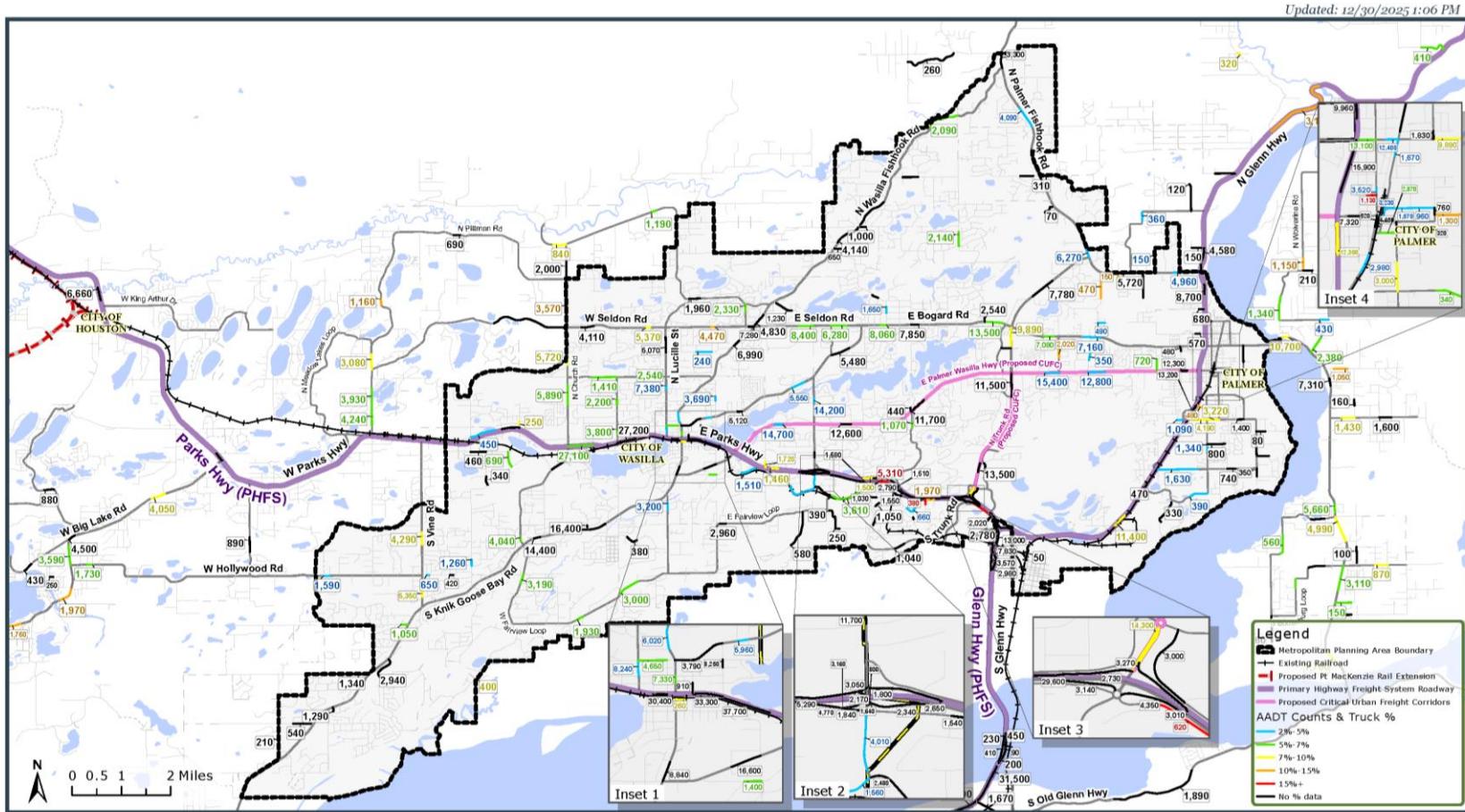
Table 2-1. Truck Percentage of Glenn and Parks Highway Annual Average Daily Traffic

Station Location	2024 AADT	Truck %
Parks Hwy MP 48 @ Vine Rd*	20,900	8
Parks Hwy MP 44.25 @ Church Rd	27,100	7
Parks Hwy MP 39.9 @ Broadview Ave	34,500	6
Trunk Rd - Btwn Parks Hwy NB ramps and Blue Lupine Dr/Georgeson Rd roundabout	14,300	8
Glenn Hwy MP 38.5 @ Kepler	11,400	8
Glenn Hwy - Btwn Glacier View Ave and Evergreen Ave/Palmer-Wasilla Hwy (Loop box missing hose count)	12,300	10
Glenn Hwy near MP 53*	3,160	14

*Station is located outside but adjacent to the MPA.

Source: Drakewell [2025]

2.4.2 RAIL FREIGHT


The ARRC serves as the rail system for the Mat-Su Valley, including the City of Wasilla. ARRC is a Class II freight railroad that operates across various regions and communities throughout Alaska, with intermodal connections to key port facilities in Whittier, Seward, and Anchorage. Freight service through the Valley plays a vital role in supporting the movement of goods to and from Southcentral and Interior Alaska. The rail corridor in the Wasilla area runs along the MPA's southern border. On this stretch of track, there are several at-grade crossings, which are maintained collaboratively by the State of Alaska, MSB, and City of Wasilla. These crossings are an important part of the regional transportation network. According to the U.S. Department of Transportation's Frequency of Highway-Rail Grade Crossing Incidents database, there have been two rail crossing incidents in the MSB between 2001 and October 2025 [USDOT, 2025]. Neither one had reportable injuries or fatalities. Figure 2-13 shows ARRC facilities and at-grade crossings in the MPA.

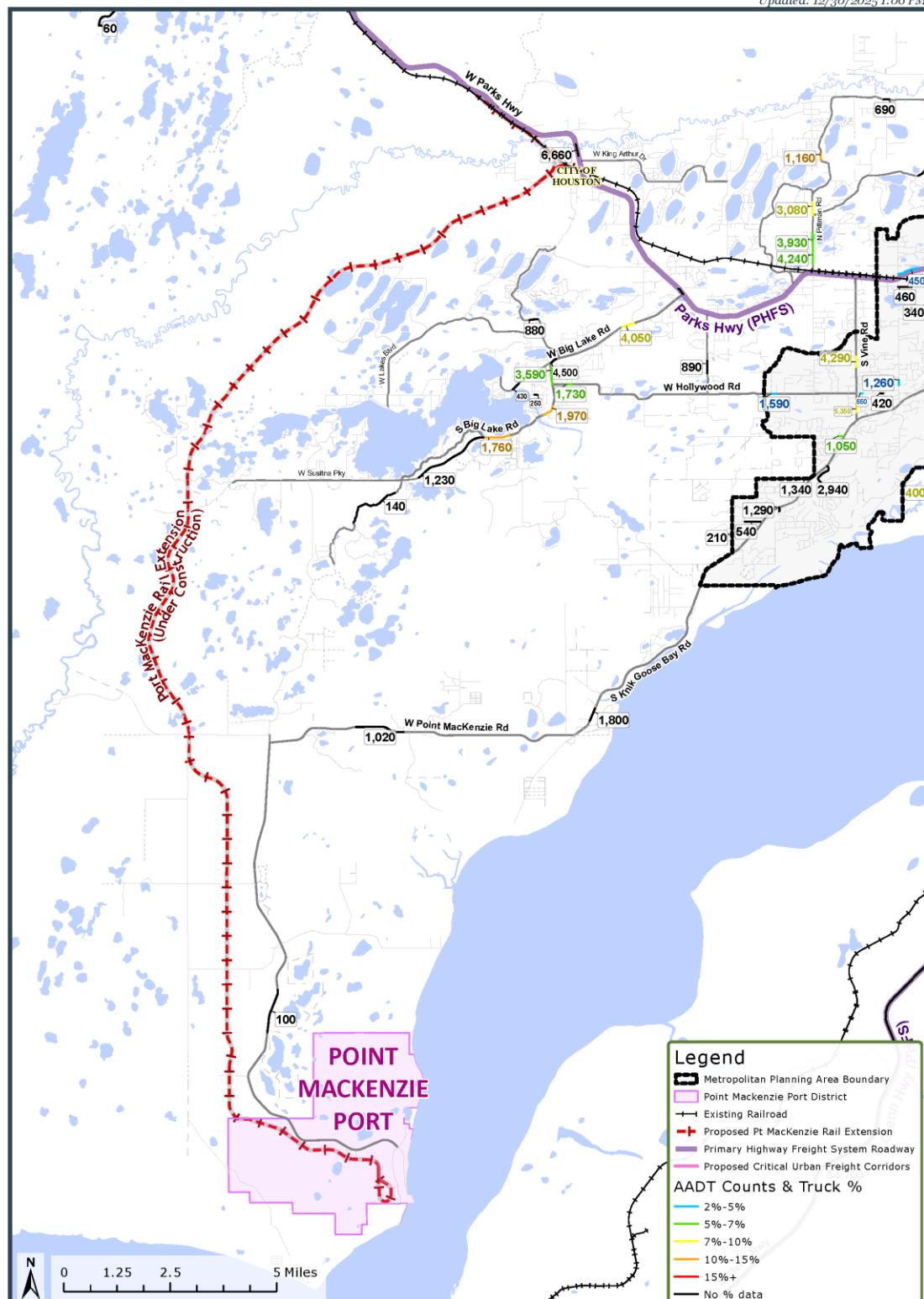
In 2020, rail carried 2.8 million tons of cargo across Alaska, which consisted primarily of coal, gravel, and petroleum products [DOT&PF, 2022]. Additionally, about 150 to 200 containers per week arrive and depart the state using the Alaska Rail Marine (ARM), a rail-barge connection between Whittier and Seattle. These goods travel from Whittier to other Railbelt communities such as MSB via rail. One of the primary cargos transported by the ARRC from the MSB is gravel from gravel mines near Palmer. In 2024, the ARRC transported approximately 1,455,000 tons of gravel [ARRC, 2025a].

One challenge associated with rail traffic in the MPA is that loading and unloading operations can block surface streets. For example, gravel train operations at the Alaska Sand & Gravel facility can block Outer Springer Loop for approximately 3 hours while Inner Spring Loop is blocked for 20 to 30 minutes and Grandview Circle is blocked for approximately 10 to 20 minutes [ARRC, 2025b].

The Port MacKenzie Rail Extension, shown in Figure 2-14, is a proposed 32-mile track connecting Port MacKenzie to the ARRC mainline track near Houston [ARRC, 2016]. Port MacKenzie has a deep-draft dock that does not require dredging and can accommodate bulk cargo (see Marine Freight for additional details). The Port MacKenzie Rail Extension Project is anticipated to create a highly efficient bulk cargo offloading facility between ships and trains, as well as shorten the distance of freight transport from Interior Alaska to tidewater [ARRC, 2024]. While some segments of the proposed rail line have been constructed, the project

requires funding to continue development. Between 2008 and 2015, a little over half of the total estimated project cost of \$314 million was funded, while it is now estimated that \$250 to \$300 million in additional funding will be required to complete design and construction. As of the publication of this memorandum, a recent legislative effort to build political support for federal funding, House Joint Resolution 14, stalled in the Alaska Senate [Alaska State Legislation, 2025].

MVP Metropolitan Transportation Plan


Primary Highway Freight Network

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-13. Primary Highway Freight Network.

MVP Metropolitan Transportation Plan

Primary Highway Freight Network

MATSU VALLEY
PLANNING for
TRANSPORTATION

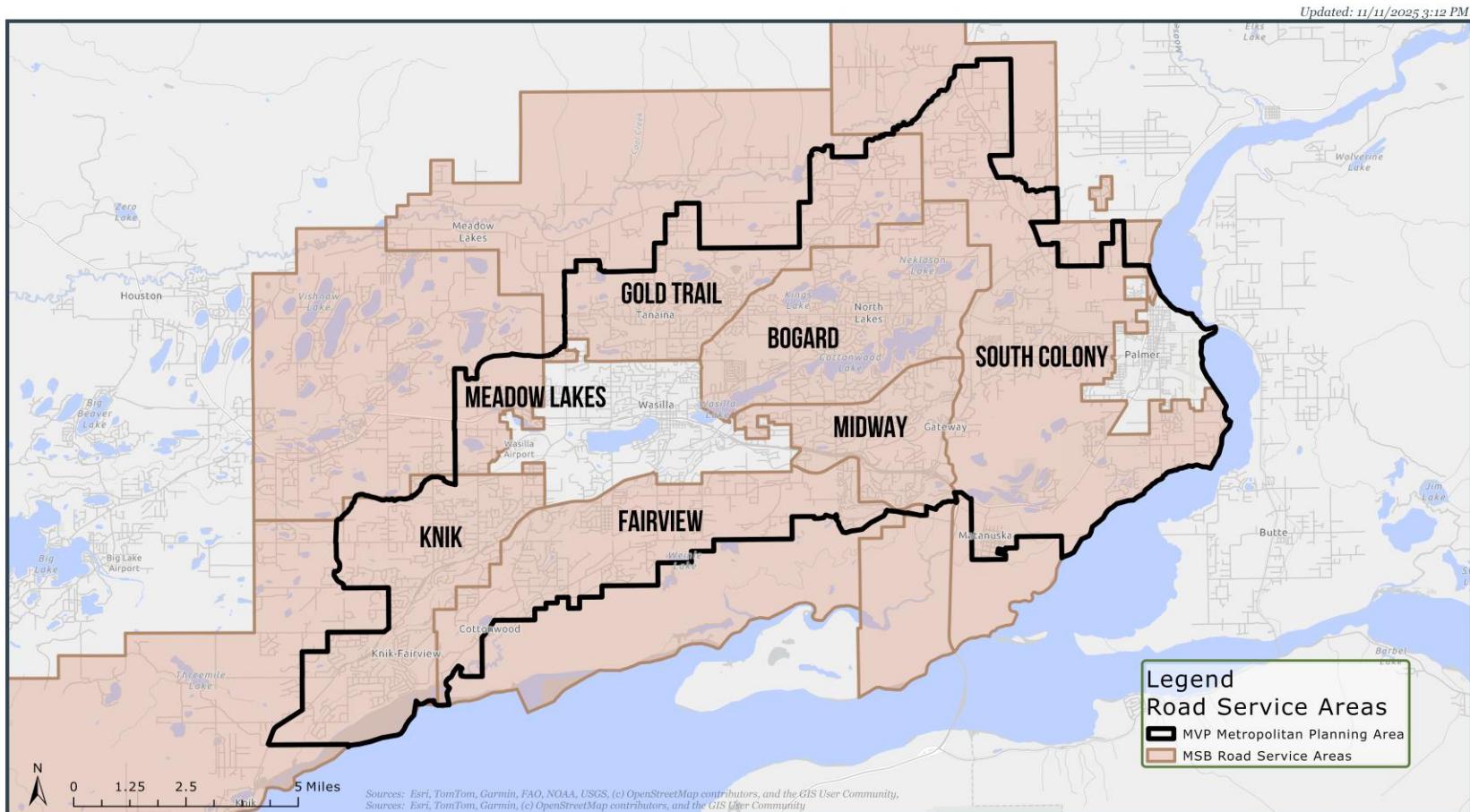
Matsu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-14. Primary Highway Freight Network and Proposed Port MacKenzie Rail Extension.

2.4.3 MARINE FREIGHT

While Port MacKenzie and the Port of Alaska are outside of the MPA, they serve as vital links in the freight system, with goods and supplies transported through the MSB by rail and truck to and from marine facilities. As noted previously, about 150 to 200 containers per week arrive and depart the state using the rail-barge connection ARM. Figure 2-14 shows the location of Port MacKenzie.

Port MacKenzie, located in the Upper Cook Inlet, provides access to the MSB via Knik-Goose Bay Road. The port handles bulk materials and freight service for Interior Alaska. The port has a competitive advantage as a deep-draft dock (60 feet at low tide) that does not require dredging and can accommodate both Panamax and Cape Class vessels [ARRC, 2024]. However, the port is still considered to be under development and is underused [MSB, 2023]. The development of the port—as well as the completion of the Port MacKenzie Rail Extension Project—will have a significant impact on the MPA's truck and rail system.


The Port of Alaska in Anchorage is responsible for half of the state's inbound freight movement that is ultimately consumed by about 90 percent of the state's population [DOT&PF, 2022]. Notably, 70 to 75 percent of the freight received at the Port of Alaska remains in the Anchorage and MSB region. Freight is transported from the port to the MSB using trucks and rail.

2.5 MAINTENANCE AND OPERATIONS

Maintaining the transportation system is one of the most important responsibilities of road owners. Well-maintained roads, bridges, sidewalks, and pathways support safe and efficient travel, protect past investments, and help communities function smoothly. Even the best-designed roadway will fall short of its potential if it is not properly maintained.

Road maintenance includes a wide range of activities, from repaving and pothole repair to snow removal, striping, drainage upkeep, street sweeping, and the maintenance of sidewalks, bike lanes, and paved multi-use paths. These activities ensure that roadways and nonmotorized facilities remain safe, accessible, and reliable year-round. For people walking, biking, or using mobility devices, good maintenance is especially important, as sidewalk heaving, broken pavement, worn crosswalk markings, standing water, and debris in bike lanes can create serious safety challenges and reduce independent mobility.

Road owners in the MPA include DOT&PF, the MSB, the City of Palmer, the City of Wasilla, and private owners, as shown in Figure 2-1. DOT&PF and the MSB—the two largest road owners—lack a dependable funding mechanism to support infrastructure development and maintenance. Additionally, there are seven Road Service Areas (RSAs) partially or wholly within the MPA that are responsible for managing subdivision roads, illustrated in Figure 2-15. This results in a broad range of maintenance priorities and standards, which can impact safety and mobility in the region.

MVP Metropolitan Transportation Plan

Road Service Areas

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-15. Road Service Areas Within the Metropolitan Planning Area.

Inadequate information about infrastructure conditions also contributes to maintenance challenges because it hinders the ability for the facility owner to program improvements in a timely manner. As of the publication of this report, no data are available for the condition of many local roads in the MPA, as well as bridges on non-DOT&PF roadways. Culvert information is also lacking (see Section 2.5.2).

Before work began on the MTP, MVP took steps to address the lack of information by developing programs for Sign, Streetlight, and Intersection, and Pavement Asset Management Plans through its Unified Planning Work Program.

This section provides an overview of pavement, bridge, and seasonal maintenance in the MPA, as well as a description of the RSA management model.

2.5.1 PAVEMENT MANAGEMENT

MSB and DOT&PF maintain a database of paved streets in the Mat-Su. The database includes date of installation, drainage, width of street, pavement condition, and maintenance priority. The pavement condition includes smoothness, rutting, and cracking data for each road. The information is used to forecast condition deterioration and perform cost/benefit analysis for repairs. Figure 2-16 shows pavement condition based on DOT&PF's and MSB's pavement management reports for streets in the project area. These data classify streets in poor, fair, and good condition.

MVP Metropolitan Transportation Plan

Pavement Management Report 2024

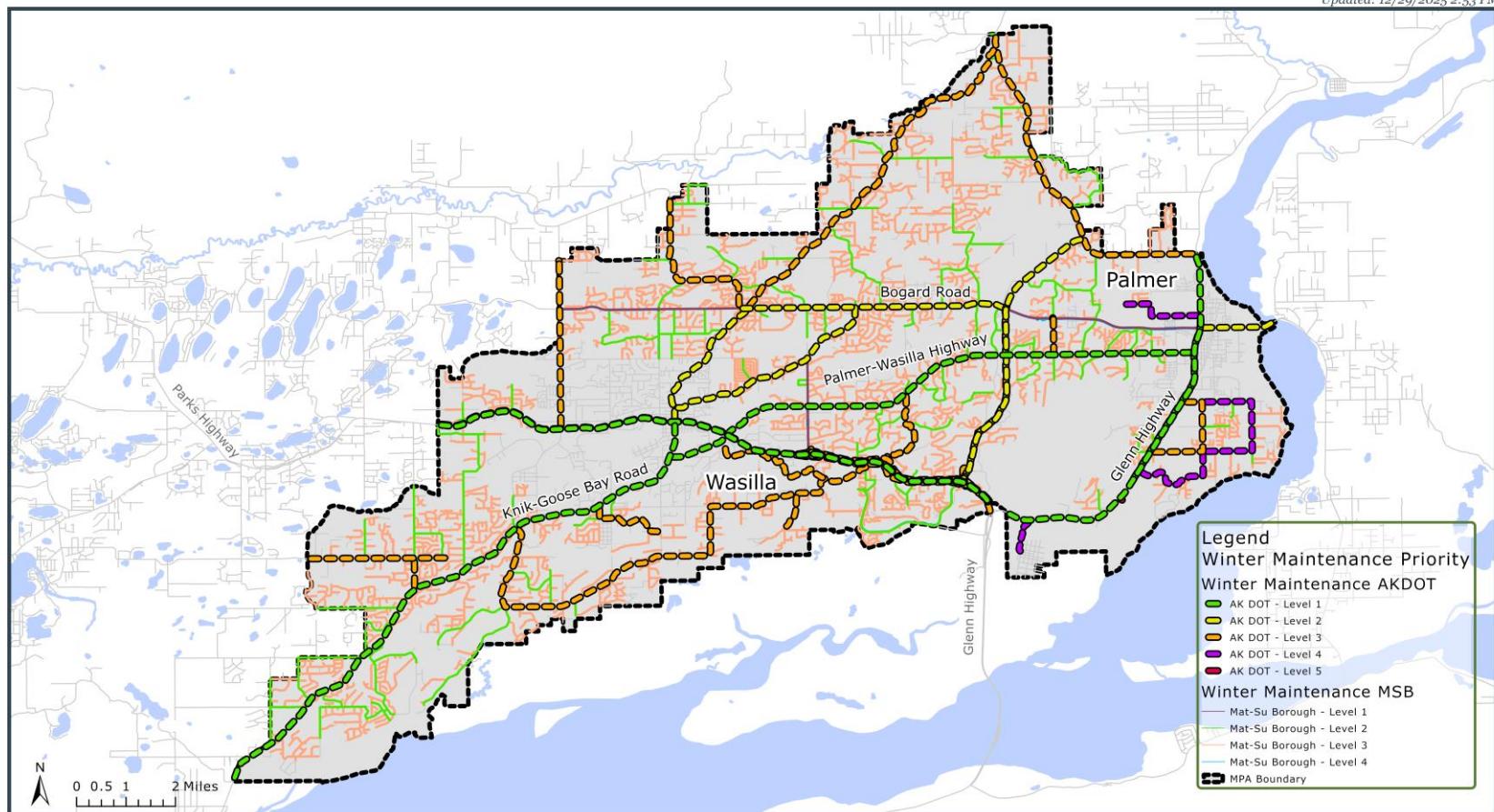
Matsu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 2-16. Pavement Management Report 2024.

2.5.2 BRIDGES

DOT&PF publishes a periodic inventory of all public bridges in Alaska that includes structure type, dimensions, location, and condition. The publication also includes recommended load ratings and identifies deficiencies for each bridge. The 2024 Alaska Bridge Inventory Report identified 23 bridges in the MPA, 14 of which were owned by the State of Alaska, and nine by MSB. All bridges were listed as fair or better condition. The Parks Highway northbound on-ramp bridge over Wasilla Creek at Hyer Road was identified as too narrow for large freight traffic.

There is a data gap on culverts across the MPA. DOT&PF indicates that the department is working on a clearinghouse for culvert information, but that database is not available as of late 2025. Understanding the location and condition of culverts in the region is important for the following reasons:


- / **Fish passage:** Ensuring that fish, particularly anadromous species, can get upstream is important for access to spawning habitats
- / **Sizing for flood events:** Culverts need to be able to accommodate large rain events or meltwater runoff; a database would help identify under-sized culverts
- / **Condition:** Simply understanding culvert conditions allows maintenance programs to focus on cleaning, repairs, or replacement of damaged or clogged culverts

2.5.3 SEASONAL MAINTENANCE

Each entity responsible for winter maintenance has a hierarchy of roadway routes for winter maintenance. The highest priority routes for the cities of Palmer and Wasilla include their respective downtown core areas. DOT&PF's priority routes are shown in Figure 2-17, alongside the MSB's. According to the MSB website, the general priorities for snow removal are school bus routes first, primary collector roads second, and secondary roads and subdivision roads third. The seven RSAs within the MPA are responsible for their own winter maintenance.

Nonmotorized infrastructure is maintained separately from roadways, which can create challenges for nonmotorized travel.

- / DOT&PF's motorized and nonmotorized winter maintenance priority routes do not align. For example, a high-priority road may be plowed, but the adjacent pathway is lower on the priority list and may still be snow-covered, thereby impeding nonmotorized travel.
- / The City of Palmer places responsibility for removal of snow and ice on property owners. Property owners may not remove snow as quickly as city crews do the streets and snow removal conducted by property owners may not be consistent across adjacent properties, which could impact walking, rolling, or bicycling.
- / The City of Wasilla provides timeframes for their snow maintenance activities for roadways, but not for sidewalks and separated pathways. This means that nonmotorized travelers do not know when snow will be removed following snowfall, impacting their decision to walk, roll, or bike.

MVP Metropolitan Transportation Plan

Winter Maintenance Priority

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-17. DOT&PF Winter Maintenance Priority.

2.5.4 ROAD SERVICE AREA MANAGEMENT MODEL

An RSA is a taxing jurisdiction within the MSB that has been established to allow the MSB to levy taxes to pay for road construction and maintenance in that area. RSAs are usually managed by a group of volunteers called a Board of Supervisors.

The RSA model can create several issues:

- / RSA-maintained roads may not meet MSB standards or even deteriorate to the point where school buses and emergency vehicles have trouble using them.
- / RSAs can determine the level of service they are willing to support.
- / An RSA may not have a tax base that is able to save for major improvements while keeping up with regular maintenance needs. This often results in the improvements not meeting MSB standards, which reinforces a cycle of sub-par roads.
- / RSA maintenance contracts are awarded to low-bid contractors, which results in variable maintenance across RSAs.

2.5.5 ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES MAINTENANCE

DOT&PF relies exclusively on state funds for maintenance and operations activities. Federal funds are typically limited to capital projects and cannot be used for maintenance. As state budgets have tightened over recent years amid decreasing oil revenues, DOT&PF has had to reduce maintenance activities such as snowplowing. This reduction in maintenance on state-owned roads can lead to:

- / Delayed snowplowing on secondary roads
- / Long gaps in routine maintenance such as crack sealing, culvert inspections, and brushing
- / Deterioration of roadway facilities

DOT&PF has faced the added challenge of finding qualified equipment operators to perform maintenance activities. Many qualified operators find that they can get higher wages in the private sector. Recently, the DOTPF has revisited wages and pay scales for equipment operators and is working to solve this problem.

2.6 SAFETY

Tracking and improving safety are top priorities of transportation planning. Safety goals are set at the federal, state, and local level to guide decision-making; data about crash locations and severity are used to identify locations that need intervention, but funding limitations require projects to be prioritized.

KEY SAFETY PLANS INCLUDED IN THE PLAN REVIEW

- / 2023–2027 Alaska Strategic Highway Safety Plan (2023)
- / MSB Comprehensive Safety Action Plan (2025)

At the federal level, current safety performance targets were established under the Fixing America's Surface Transportation (FAST) Act. At the state level, DOT&PF sets safety performance targets, which are provided in Table 2-2. MVP is committed to improving safety and has adopted DOT&PF's performance targets, for use in assessing serious injuries and fatalities.⁵

Table 2-2. Statewide DOT&PF Safety Performance Targets

Performance Measures	Statewide 2025 Target
Fatalities	≤ 62.0
Fatality Rate per HMVMT*	≤ 1.120
Serious Injuries	≤ 276.4
Serious Injuries per HMVMT*	≤ 5.033
Nonmotorized Fatality and Nonmotorized Serious Injuries (Combined)	≤ 48.0

* HVMT = hundred million vehicle miles traveled

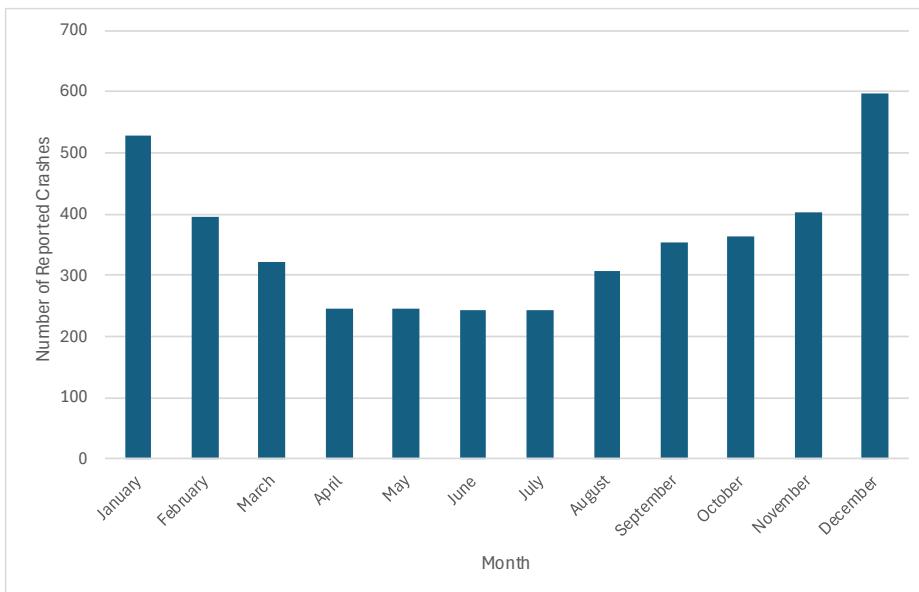
The Alaska SHSP identifies traffic safety problems throughout the state and includes goals and objectives that link to performance measures and targets established through data analysis and stakeholder input. The SHSP guides DOT&PF plans and programs that implement the SHSP, including the Highway Safety Improvement Program (HSIP). Since 2007, the goal of the SHSP has been to reduce traffic-related fatalities on public roads in Alaska to zero by implementing proven countermeasures. The high-injury intersections and corridors identified in the SHSP Vulnerable Road User Safety Assessment are included in Section 2.2.3.

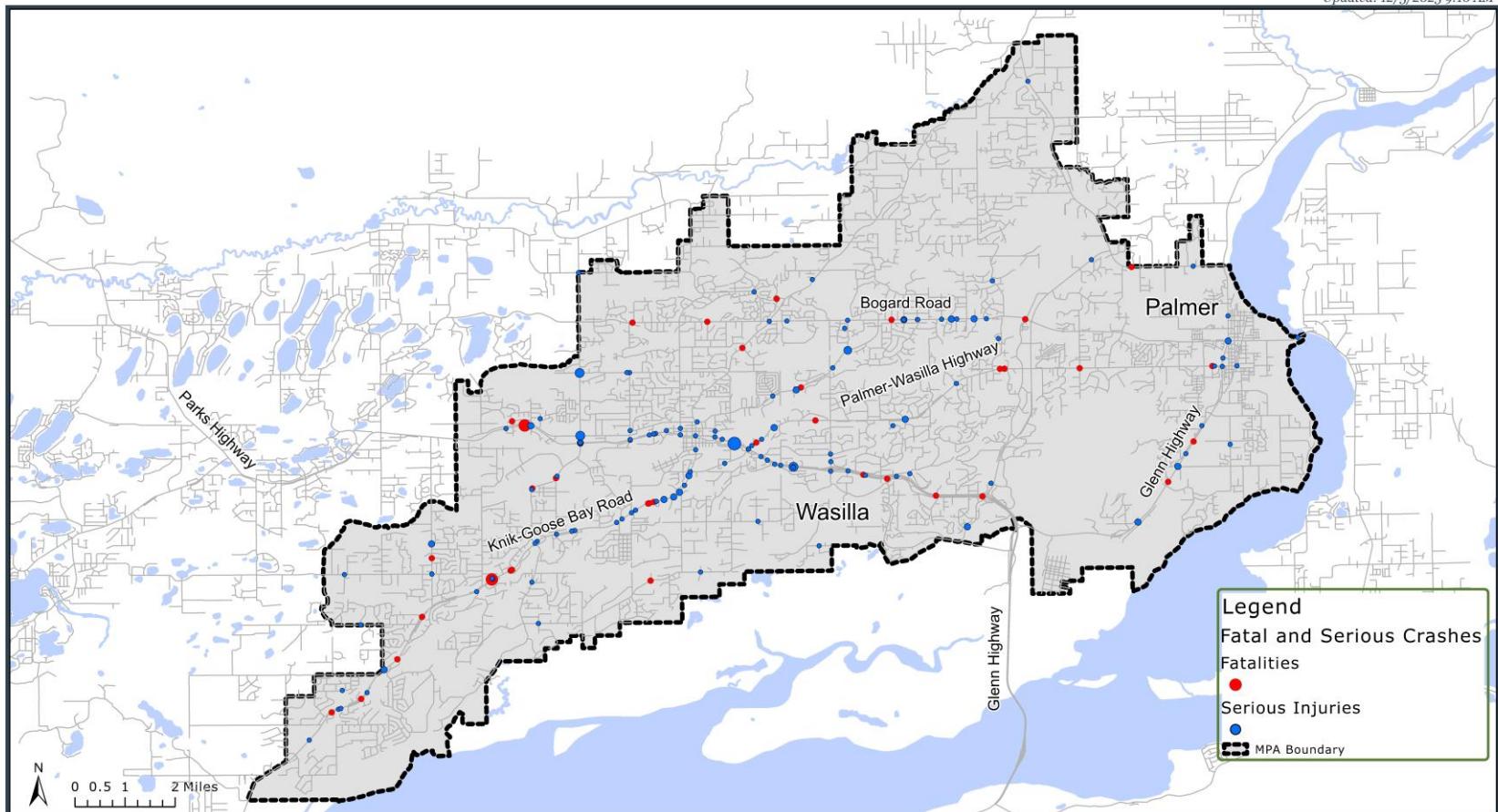
2.6.1 CRASH HISTORY

A total of 4,250 crashes were reported within the MVP boundary from 2018 to 2022. Total crashes include all wildlife, pedestrian, bicycle, and vehicle crashes reported. This also includes 37 fatal injury crashes and 133 serious injury crashes⁶. The locations of fatal and serious crashes are shown in Figure 2-18.

A summary of crash frequency by month from 2018 through 2022 is shown in the following chart. Speed was shown to be a significant contributor to crashes (approximately 25 percent). Approximately 76 percent of the crashes were associated with intersections, while 24 percent were associated with roadway segments. The greatest number of crashes occurred during winter months (November–February), as shown in Figure 2-18.

⁶ A serious injury is defined as any injury other than fatal resulting in one or more of the following: severe laceration resulting in exposure of underlying tissues/muscle/organs or resulting in significant loss of blood, broken or distorted extremity (arm or leg), crush injuries, suspected skull, chest, or abdominal injury other than bruises or minor lacerations, significant burns (second and third degree burns over 10 percent or more of the body), unconsciousness when taken from the crash scene, paralysis [*"suspected serious injury(A), Model Minimum Uniform Crash Criteria"*]




Figure 2-18. Number of Reported Crashes by Month.

Twenty-one bicycle and 27 pedestrian crashes were reported between 2018 and 2022. Bicycle and pedestrian crashes combined represent only 1.1 percent of all crashes in the MPA during this same period. The crashes are summarized in Table 2-3. The proportion of fatal and serious injury crashes to total crashes for bicyclists and pedestrians is 25 percent, which is significantly higher than the proportion for all crashes (4 percent).

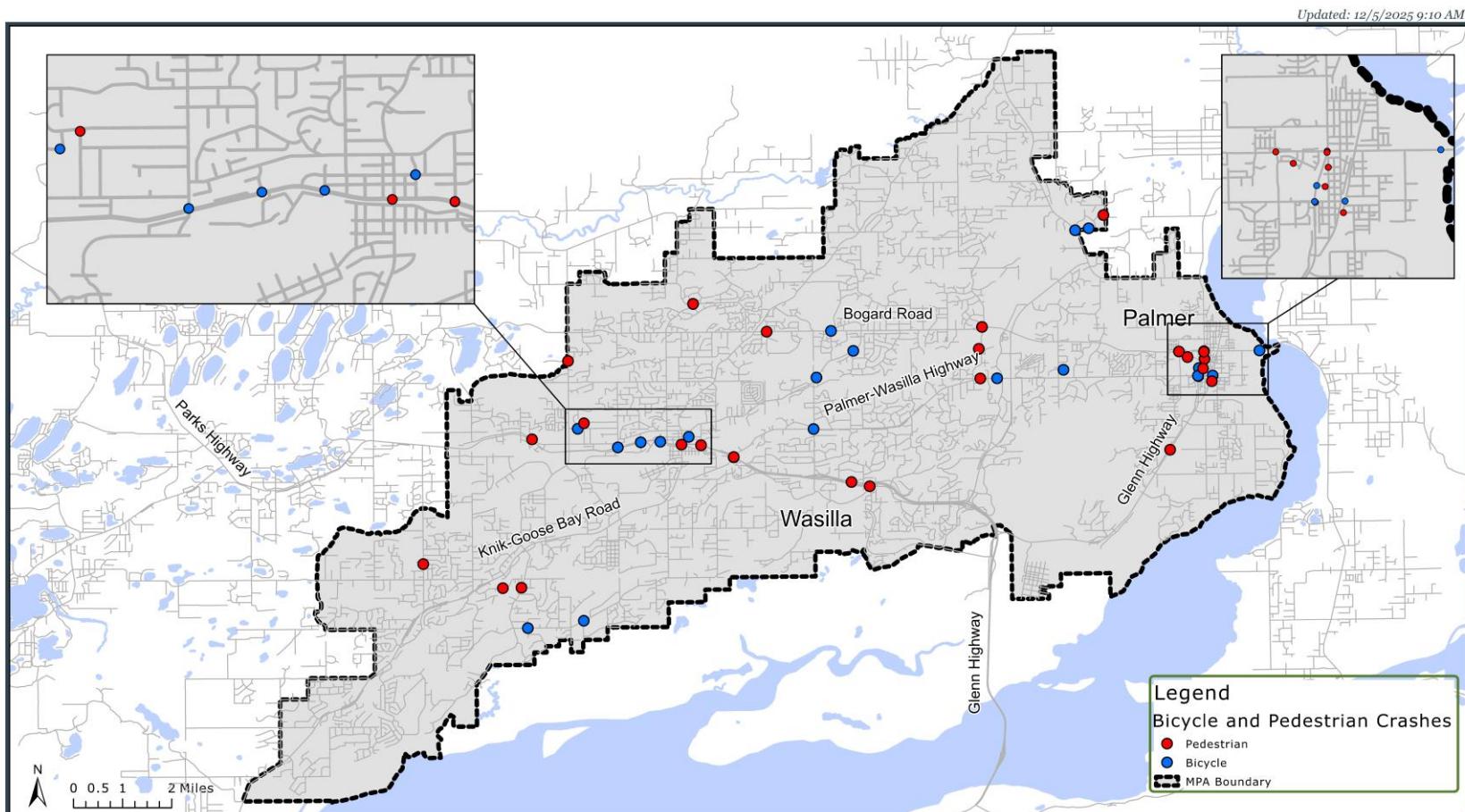
Table 2-3. Bicycle and Pedestrian Crash Data (2018-2022)

Crash Type	Fatal	Serious Injury	Minor Injury	Total
Bicyclist	0	5	14	21
Pedestrian	4	3	20	27

Existing crash data showed that 80 percent of bicycle and pedestrian crashes occurred at intersections, and 89 percent of crashes occurred during dark or unlit conditions. Bicycle and pedestrian crashes tended to correspond with evening peak hours. There was a total of four pedestrian fatalities during the 5-year period. This translates to about 0.8 pedestrian fatalities per year. Strategies identified in the SHSP for reducing pedestrian and bicycle fatalities include providing visible and protected spaces for all users and modifying the behavior of dangerous driving. Figure 2-19 identifies locations of vehicle crashes, Figure 2-20 shows bicycle and pedestrian crashes, while Figure 2-21 shows a heat map of all injuries and fatalities between 2018 and 2022.

MVP Metropolitan Transportation Plan

Fatal and Serious Crashes, 2018-2022


* Based on AK DOT PF and MSB Crash Data from 2018 to 2022

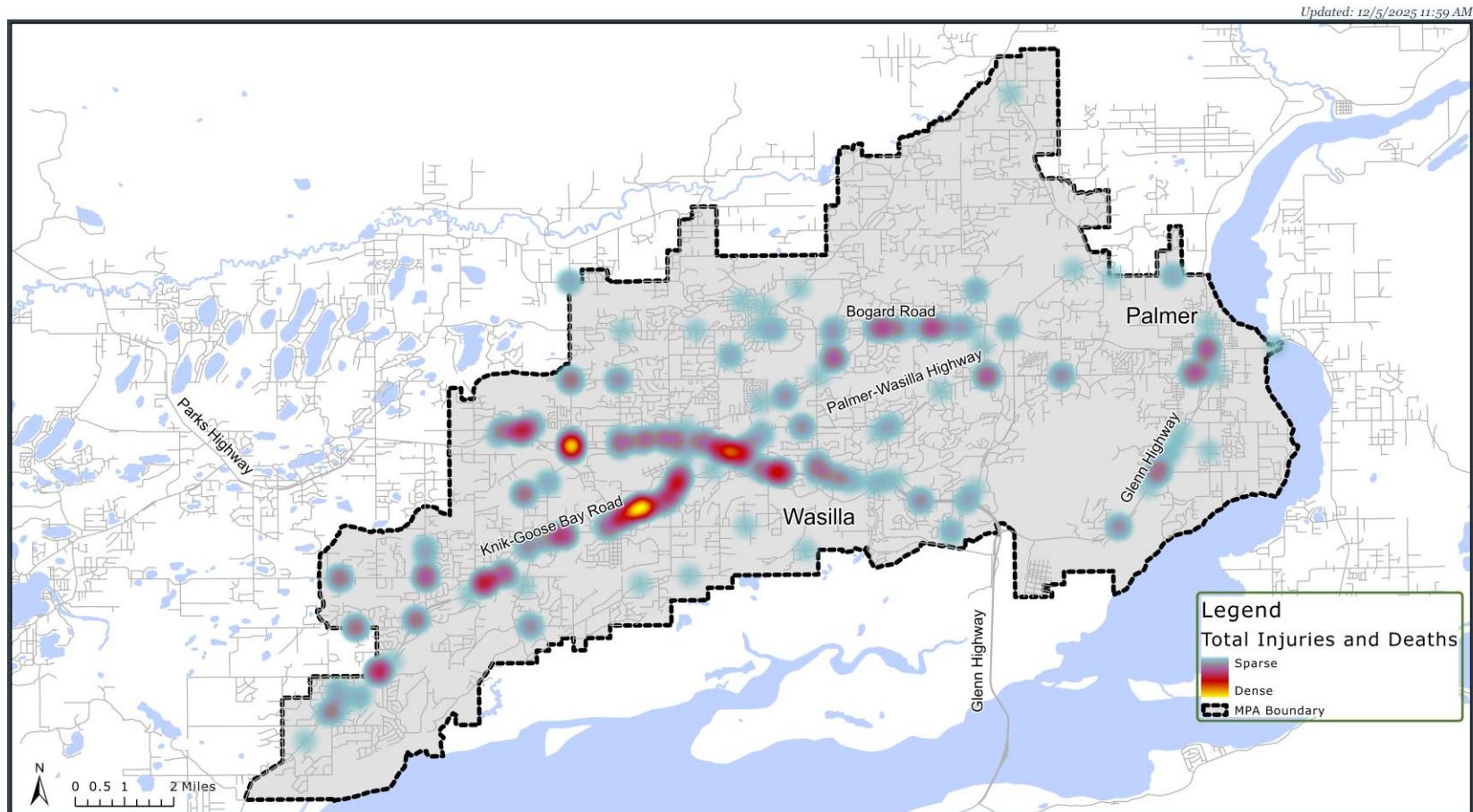
MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-19. Fatal and Serious Crashes, 2018-2022.

MVP Metropolitan Transportation Plan

Bicycle and Pedestrian Crashes, 2018-2022


* Based on AK DOT PF and MSB Crash Data from 2018 to 2022

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-20. Bicycle and Pedestrian Crashes, 2018-2022.

MVP Metropolitan Transportation Plan

Heat Map - Total Injuries and Deaths, 2018-2022

* Based on AK DOT PF and MSB Crash Data from 2018 to 2022

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 2-21. Heat Map – Total Injuries and Death.

3.0 TRAFFIC & SAFETY ANALYSIS

This section analyzes a range of roadway data—including functional classification, AADT, safety analysis, and crash history—to identify studies to address regional- and corridor-level safety issues and as a basis for project prioritization. A level of service (LOS) analysis is also included to provide a comprehensive picture of how the network serves residents, commuters, and freight movement.

3.1 CRASH ANALYSIS

3.1.1 EQUIVALENT PROPERTY DAMAGE ONLY METHOD

Understanding where and why crashes occur is an essential part of evaluating the performance and safety of a transportation system. However, not all crashes are equal in terms of their severity or the impact they have on people and communities. The Equivalent Property Damage Only (EPDO) method is a commonly used approach that helps planners compare crash patterns by assigning greater weight to more serious crashes. This provides a fuller and more meaningful picture of roadway safety conditions.

EPDO works by converting different types of crashes, fatal, injury, and property damage only (PDO), into a single, combined score. Crashes that result in a death or serious injury are weighted more heavily than crashes that only result in vehicle damage. For example, one fatal crash may be counted as "worth" many PDO crashes. Applying these weights allows planners to create a single comparable measure that reflects both how often crashes happen and how severe they are.

Using EPDO is particularly helpful in metropolitan transportation planning for several reasons:

1. **Improves comparisons across roadways.** Because EPDO ratings reflect both the number and seriousness of crashes, planners can better compare locations that have different types of safety problems. A corridor with fewer crashes overall but several serious injury crashes may rank higher—and therefore warrant more attention—than a corridor with many low-severity crashes.
2. **Helps identify safety priorities.** EPDO highlights locations where crashes have had the greatest human and economic impact. This helps agencies direct limited resources to places where safety improvements will make the biggest difference.
3. **Supports data-driven decision-making.** Using a weighted scoring method allows the MPO to evaluate safety in a consistent, transparent way. This strengthens project prioritization and ensures that safety considerations are incorporated into long-range transportation investments.
4. **Provides a clear metric for communication.** Because EPDO condenses complex crash data into a single number, it offers a straightforward way to explain safety needs to officials, partners, and the public—even those without a technical background.

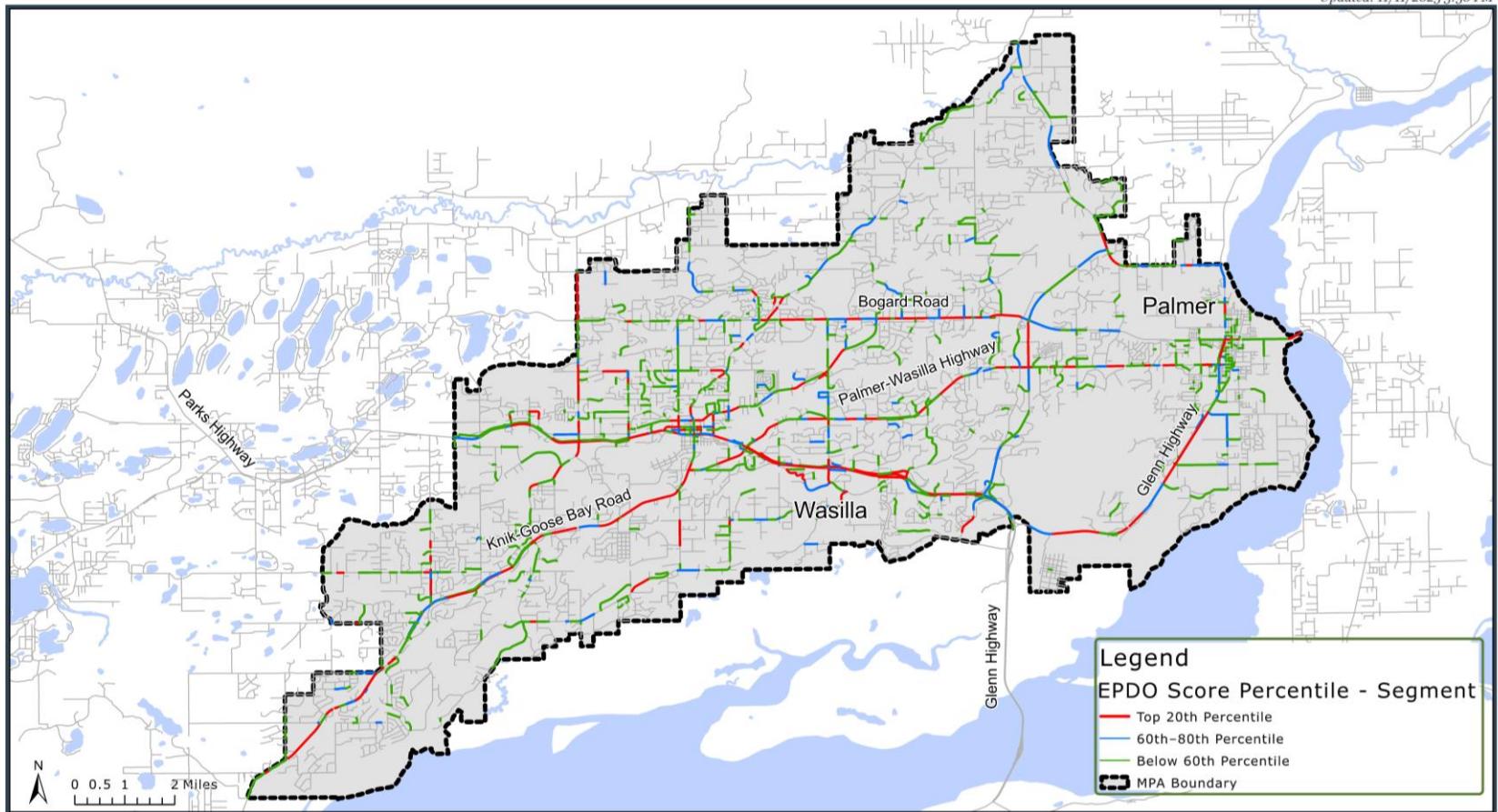

The DOT&PF HSIP Handbook recommends weighting crashes based on severity. For instance, the Handbook recommends a cost of \$29,900 to be used for PDO crashes where crashes with a fatality have a cost of \$2,986,000 (almost 100 times higher than PDO crashes). EPDO scores were calculated for locations in the study area and shown in Figure 3-1 and Figure 3-2. Roadway segments and intersections with the highest EPDO score are ranked and shown in Table 3-1.

Table 3-1. Key Intersections and Road Segments Crash Summaries (2018–2022)

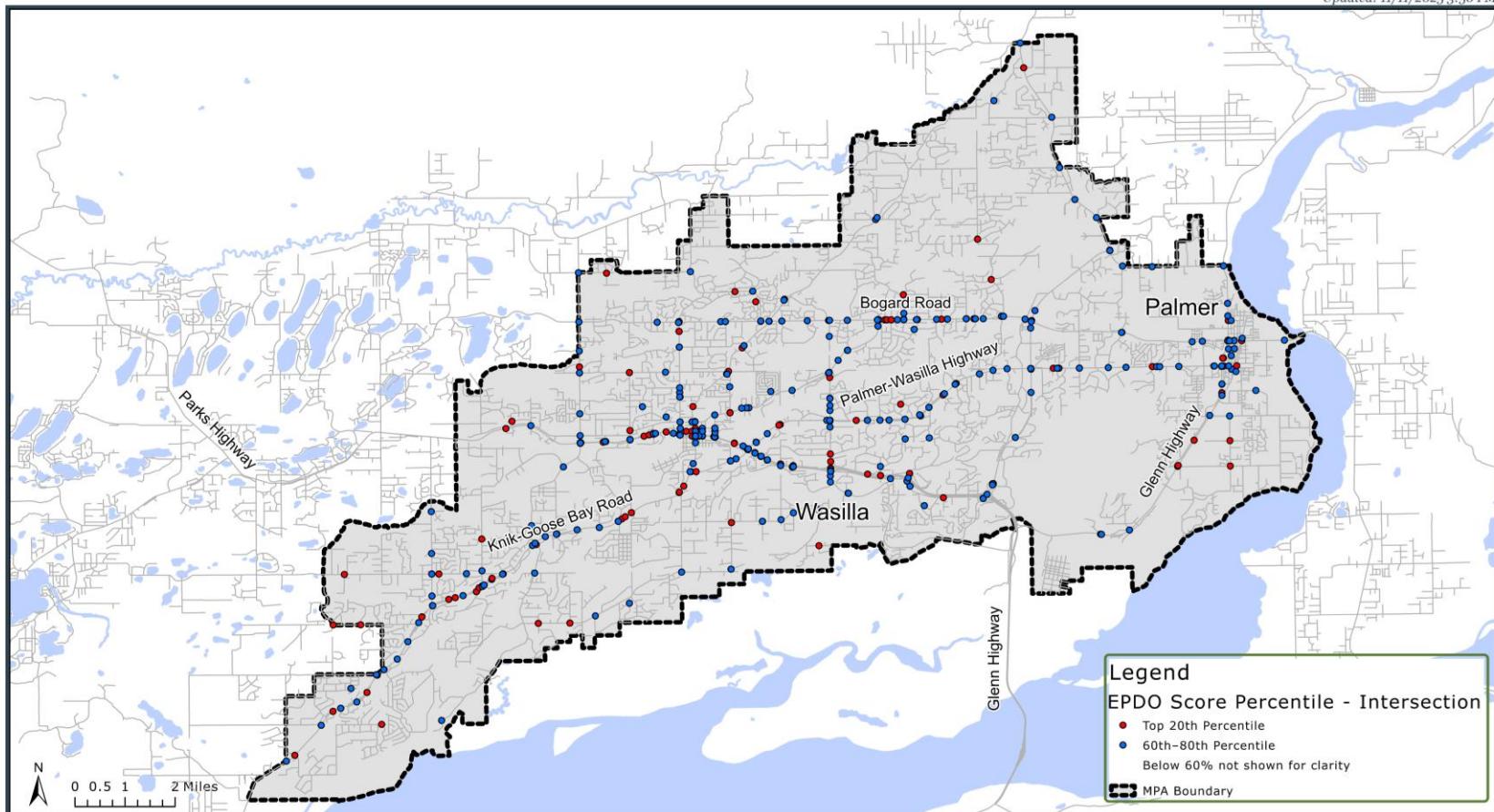
Location	EPDO Score	Fatal	Serious Injury	Total Crashes
Roadway Segment				
Knik-Goose Bay Rd – Eagle Eye Circle to Endeavor St	118	3	9	25
Alpine St. at E. Parks Highway	69	0	6	32
Palmer/Wasilla Hwy – Hurley Circle to Parks Highway	62	1	4	44
Knik-Goose Bay Rd – Partch Dr to Country Dr	54	2	3	18
Church Rd – W. Machen Rd to Parks Highway	51	1	6	44
Intersection				
Parks Hwy SB at N. Bella Way	40	0	8	1
Knik-Goose Bay Rd at Shady Lane	29	2	1	1
Church Rd at Nicola Rd	26	0	4	1
Palmer/Wasilla Hwy at Trunk Rd	25	0	0	22
Alpine St ad E Parks Hwy	24	0	4	1

*Roadway segment currently under construction for HSIP safety improvements

Between 2018 and 2022, 35 vehicle fatalities occurred in the MPA. The SHSP noted that 80 percent of fatal and serious injury crashes on rural roads were caused by vehicle lane departure or roadway departure. In urban areas, 78 percent of all fatal and serious injury crashes occurred at an intersection. Strategies to reduce fatal and serious injuries identified in the SHSP include improving speed management, vehicle safety, and emergency response, as well as identifying high-crash locations.

MVP Metropolitan Transportation Plan

MSB Segment Safety Analysis: EPDO Score


* Based on AK DOT PF and MSB Crash Data from 2018 to 2022

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 3-1. Segment Safety Analysis: Equivalent Property Damage Only Score.

MVP Metropolitan Transportation Plan

MSB Intersection Safety Analysis: EPDO Score

* Based on AK DOT PF and MSB Crash Data from 2018 to 2022

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 3-2. Intersection Safety Analysis: Equivalent Property Damage Only Score.

3.2 LEVEL OF SERVICE

LOS is a key metric used by planners to evaluate how effectively the transportation network handles current and future travel demand, typically graded from A (free flow) to F (severe congestion) (see Figure 3-3). LOS helps identify underperforming corridors and intersections by analyzing traffic volume, speed, and delay.

These insights guide investment priorities and support long-range planning, especially when integrated with other indicators like crash history, AADT, and roadway classification to pinpoint areas needing capacity upgrades or multimodal improvements.

3.2.1 ANALYSIS PERIODS

The TDMs include an existing conditions scenario for 2019 and a future year scenario for 2050. The 2050 scenario incorporates proposed roadway improvements that are currently planned, in design, or under construction. Model outputs provide projected daily traffic volumes as well as traffic volumes for AM peak (7AM–9AM), PM peak (3PM–6PM) and off-peak periods. This analysis evaluated the following scenarios and time periods.

- / Existing Conditions 2019 (daily)
- / Existing Conditions 2019 (PM peak hour)
- / Future Year Conditions 2050 (daily)
- / Future Year Conditions 2050 (PM peak hour)

↑
Best
↓
Worst

Level of Service	Flow Conditions	Technical Descriptions
A		Highest level of service. Traffic flows freely with little or no restrictions on maneuverability. No Delays
B		Traffic flows freely, but drivers have slightly less freedom to maneuver. No Delays
C		Density becomes noticeable with ability to maneuver limited by other vehicles. Minimal Delays
D		Speed and ability to maneuver is severely restricted by increasing density of vehicles. Minimal Delays
E		Unstable traffic flow. Speeds vary greatly and are unpredictable. Moderate Delays
F		Traffic flow is unstable, with brief periods of movement followed by forced stops. Significant Delays

Figure 3-3. Levels of Service Definitions [Idaho Transportation Department, 2026].

Based on the review of traffic data collected in the region, the PM peak hour typically occurs between 5 and 6 PM, and the peak hour conversion factor is approximately 2.75 (Drakewell, 2025). Therefore, the PM peak hour volume is calculated by dividing the PM peak period volume by 2.75.

3.2.2 QUALITY LEVEL OF SERVICE

The DOT&PF does not publish Quality LOS standards. For this analysis, the Florida Department of Transportation's (FDOT's) generalized service volume tables (GSVTs), which are based on Highway Capacity Manual (HCM) urban street facility methodology, were used to determine the Quality LOS (TRB, 2016). FDOT's GSVTs are analysis tools for conducting high-level long-range planning analysis. Each GSVT provides generalized peak hour directional, peak hour two-way, and AADT maximum service volumes for a given LOS by number of lanes and land use context classification. The GSVTs provide the highest number of vehicles for a given LOS; however, the service volumes do not represent capacity. Quality of service reflects a user's perception of how well a roadway functions, which is influenced by factors such as travel speed, delay, and density. The GSVT criteria are established for arterial roadways and do not specifically address collectors or local streets. In the absence of specific guidance, the arterial criteria were applied to collectors for this analysis.

Consistent with the FDOT LOS framework, our assessment uses FDOT's GSVTs for planning-level analysis. At these planning scales, LOS A and B are grouped because both represent free-flow conditions with negligible delay and similar user experience; distinguishing between A and B offers little actionable value for system-level decisions. FDOT's generalized tables and training materials emphasize thresholds at LOS B through E, with policy targets commonly at LOS C through F, reflecting a focus on identifying corridors approaching capacity rather than differentiating between two free-flow states. Accordingly, our reporting consolidates A and B and presents results for B, C, D, E, and F, aligning with FDOT's planning practice and the HCM methods.

3.2.3 ASSUMPTIONS

This analysis assumes C1 and C2 classifications for the region, which is predominantly characterized by natural, preserved landscapes and sparsely settled rural areas. The AADT and peak hour GSVTs for C1 and C2 are shown in Table 3-2 and Table 3-3, respectively. It is also assumed that LOS B includes all LOS A.

Table 3-2. Average Annual Daily Traffic Two-Way General Service Volume Table for C1 and C2 Classification

Configuration	B	C	D	E
2 Lane	4,600	8,200	14,000	28,500
4 Lane	32,000	45,800	55,700	63,900
6 Lane	48,000	68,300	83,700	95,900

Source: FDOT [2023]

LEVEL OF SERVICE DEFINITIONS IN PLANNING VS. MODELING

In transportation planning, **Quality Level of Service**, grades A through F, come from the Highway Capacity Manual and describe real-world driving conditions based on speed, delay, and comfort. LOS A means free flow with almost no delay, while LOS F indicates breakdown and heavy congestion. Quality LOS is determined by comparing forecasted traffic volumes with service volume thresholds established for the applicable facility type and land use context.

In contrast, **Travel Demand Model LOS** is a planning metric based on the ratio of simulated demand to modeled capacity (D/C). For example, LOS A in the model means D/C is less than 0.6, and LOS F means demand exceeds capacity (D/C > 1.0). This approach helps planners identify where future traffic may strain the system, but it does not measure actual driver experience. Grouping A and B in both planning and model outputs is common because both represent free-flow conditions and offer little practical difference for long-range planning decisions.

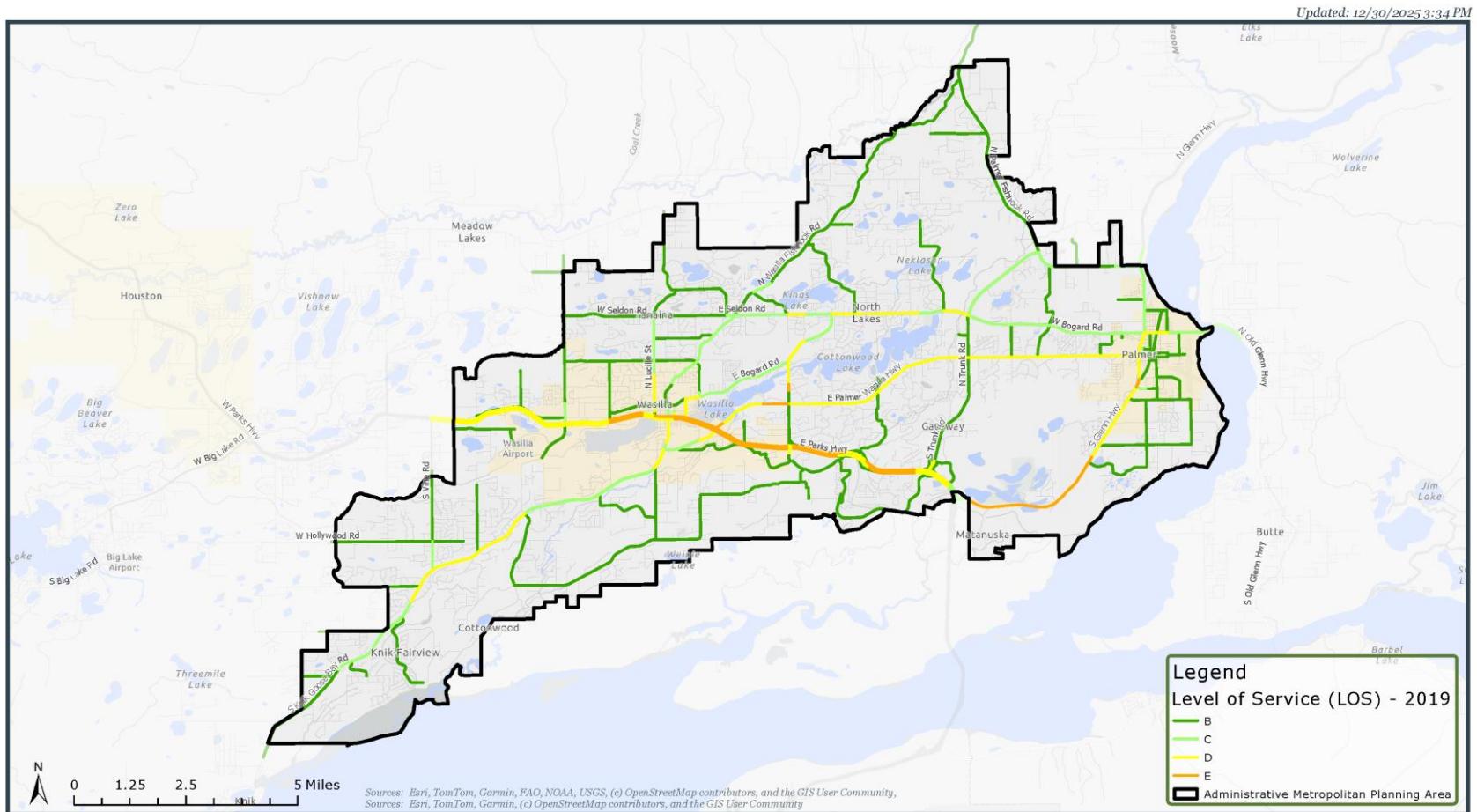
Table 3-3. Peak Hour Two-Way General Service Volume Table for C1 and C2 Classification

Configuration	B	C	D	E
2 Lane	440	780	1,330	2,710
4 Lane	3,040	4,350	5,290	6,070
6 Lane	4,560	6,490	7,950	9,110

Source: FDOT [2023]

Certain roadway characteristics, such as turn lanes, medians, and one-way restrictions, may affect the service volumes and require the analysis to apply adjustment factors to the service volumes. The following adjustment factors for C1 and C2 classification were used in the analysis:

- / 2 Lane Divided Roadway with Exclusive Left Turn Adjustment: Multiply by 1.05
- / Multilane Undivided Highway with Exclusive Left Turn Adjustment: Multiply by 0.95
- / Multilane Undivided Highway without Exclusive Left Turn Adjustment: Multiply by 0.75


Additional adjustment factors were applied to certain segments based on values from other context classifications to account for one-way facilities. Engineering judgment was used to interpolate service volume for three-lane roadway segments. These include the following⁷:

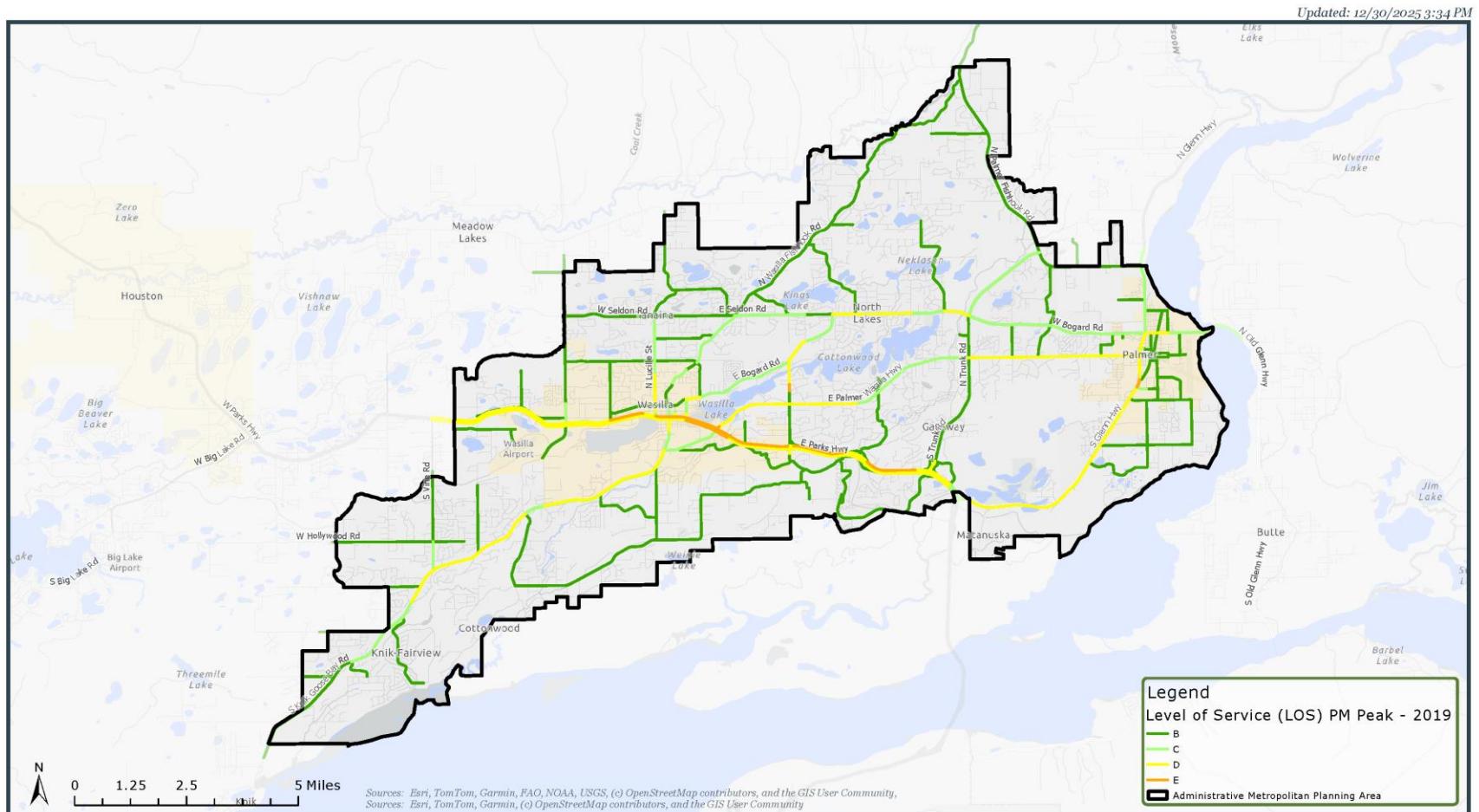
- / One-Way Facilities: Multiply by 0.6. This applies to the proposed Main St-Talkeetna St couplet.
- / Three-Lane Roadway Segments: Multiply by 1.5. Palmer-Wasilla Highway between Knik-Goose Bay Road and Parks Highway has two eastbound lanes and one westbound lane.

3.2.4 ANALYSIS SUMMARY

The project team developed a GIS-based tool to query the projected traffic volumes in the TDM and determine the Quality LOS for each segment based on the GSVTs and adjustment factors described above. Maps showing roadway Quality LOS for daily and PM peak hour conditions are provided in Figures 3-4 through 3-7. While most roadways are underutilized during most hours of the day, many roadway segments experience higher demand during peak hours, resulting in worse quality LOS than the typical daily conditions. Peak hour traffic is more directional and affected by traffic controls, so segments with consistently high demand may have worse daily LOS than peak-hour LOS, making direct comparisons between daily and peak-hour LOS inappropriate. Under 2019 existing conditions, most roadways in the region operate at a Quality LOS D or better. Portions of Parks Highway and Glenn Highway operate at LOS E due to higher traffic demand. The 2050 scenario includes several proposed capacity improvements on the roadway network such as Seward Meridian Parkway, Trunk Road, and Knik-Goose Bay Road. Although much of Parks Highway remains at LOS E in 2050 due to capacity limitations, improvements on surrounding roadway network, such as the planned improvements to Fairview Loop, would divert traffic to alternate routes and help prevent further degradation in Quality LOS. Much of the Palmer-Wasilla Highway and Knik-Goose Bay Road operate at LOS D in 2050, but any further increase in demand would degrade the performance. During the PM peak hour, segments of the Parks Highway near the Glenn Highway interchange operate at LOS F, driven by inbound commuter traffic entering the region.

⁷ The GSVTs are intended as a generalized planning tool and do not account for specific traffic control features or operational conditions. The LOS results in this study should not be used for traffic operational analysis or roadway design.

MVP Metropolitan Transportation Plan

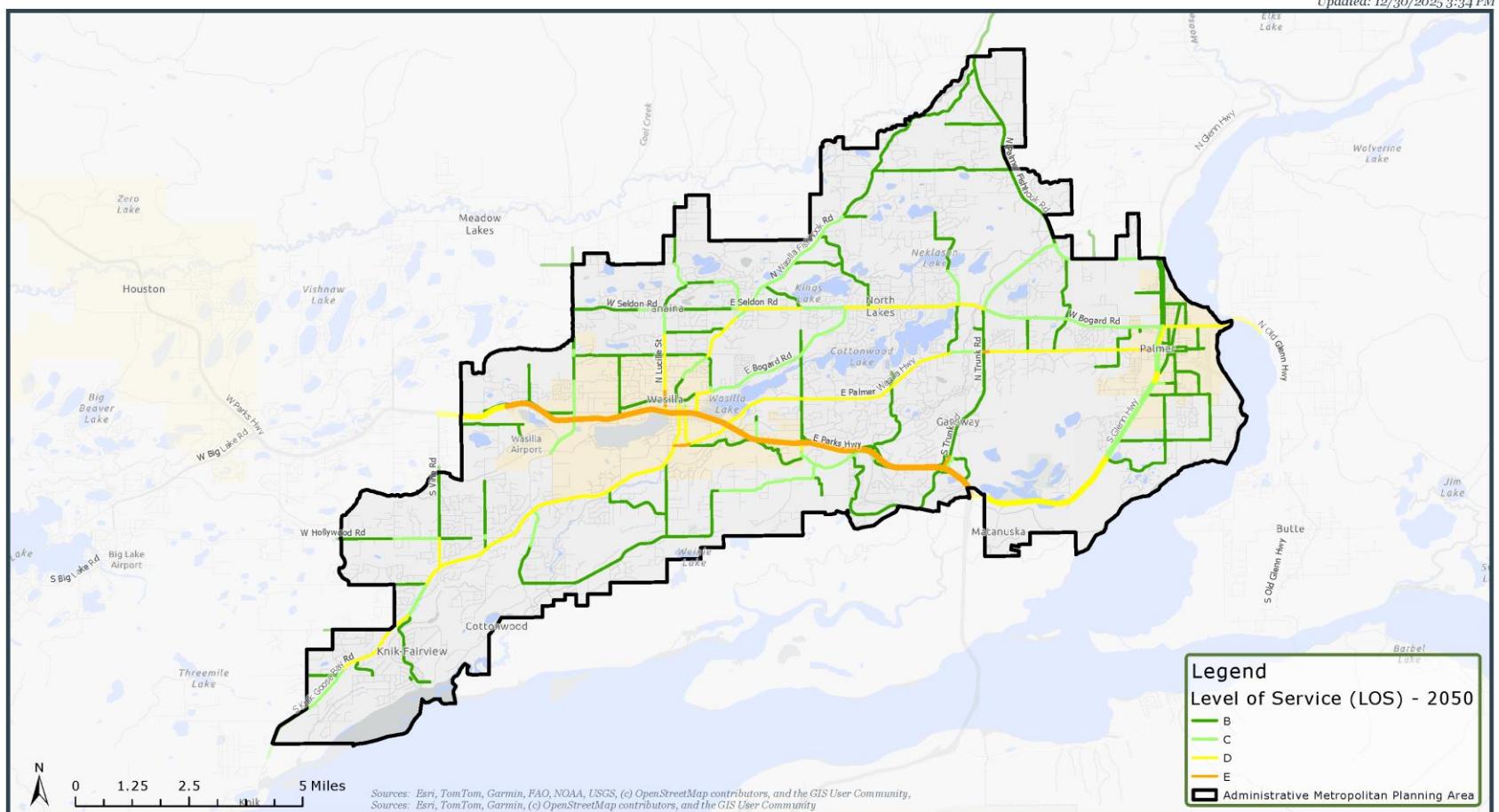

Level of Service - 2019

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 3-4. Level of Service – 2019.

MVP Metropolitan Transportation Plan

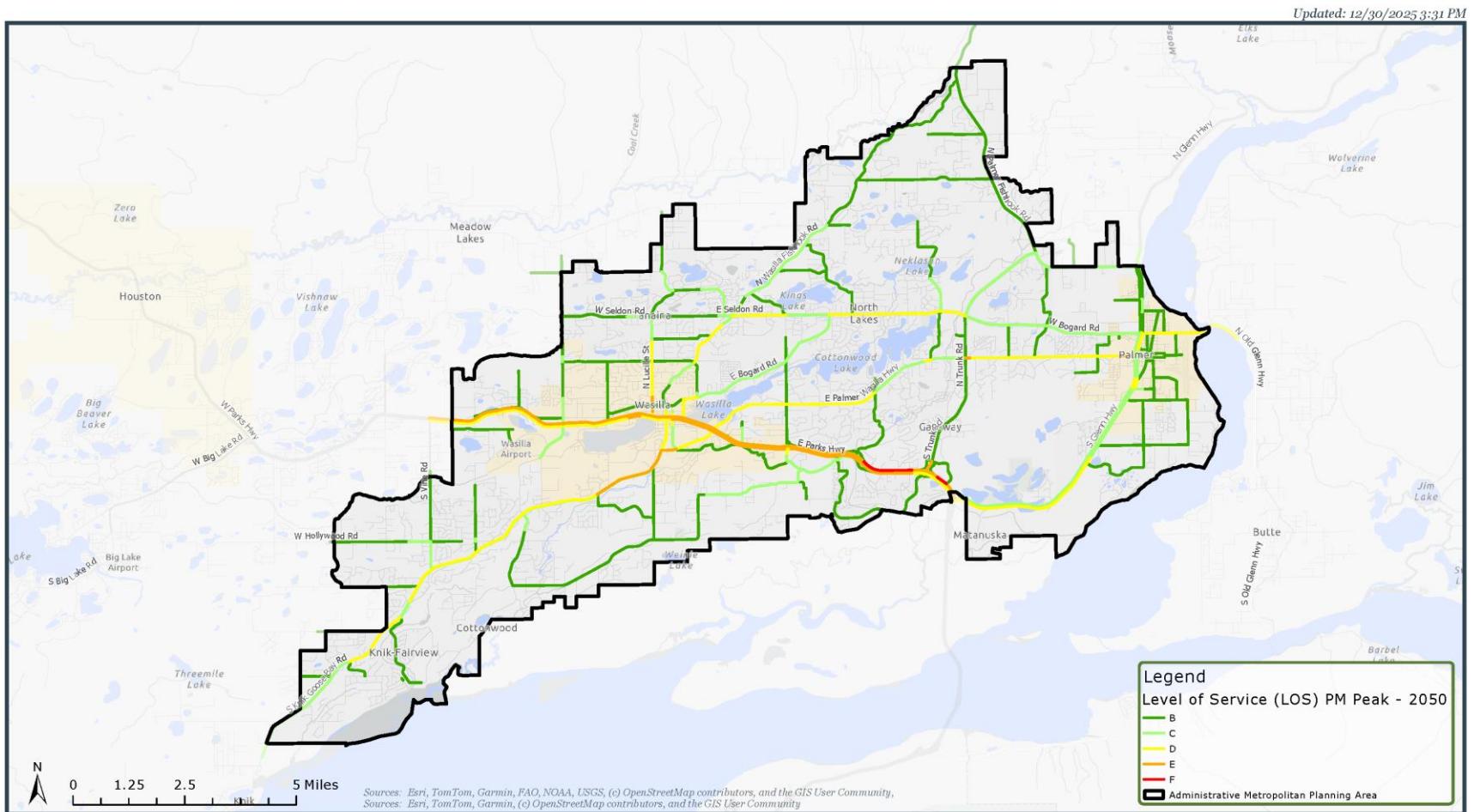

Level of Service PM Peak - 2019

MATSU VALLEY
Planning for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 3-5. Level of Service PM Peak – 2019.

MVP Metropolitan Transportation Plan


Level of Service - 2050

MATSU VALLEY
 PLANNING for
 TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 3-6. Level of Service – 2050.

MVP Metropolitan Transportation Plan

Level of Service PM Peak - 2050

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

MATSU VALLEY
PLANNING for
TRANSPORTATION

Figure 3-7. Level of Service PM Peak – 2050.

4.0 TRAFFIC GROWTH MODELING

As part of the foundational work for the MTP, consultants have developed a TDM to predict future travel behavior and assess the impacts of various policies and infrastructure changes in the area. The TDM is a critical tool for anticipating how population growth, land use changes, and economic activity will influence travel behavior. In the development of the MTP and TIP, the model helps forecast future travel demand, identify system deficiencies, and prioritize projects. This ensures that investments are targeted where they will have the greatest impact on safety, mobility, and quality of life.

The TDM analyzes how people use transportation systems and forecasts travel patterns based on current behaviors and demographic data. Transportation planners use TDMs to estimate future traffic volumes, transit ridership, and the overall demand for different modes of travel, including walking, bicycling, and driving personal vehicles.

The TDM for the MTP was built to sufficiently capture the complexities of travel behavior within the Mat-Su, as well as what is anticipated to be forecasted into the relative future and the anticipated policy needs in the region. The travel model's biggest strength is its use as a risk management exercise in a planning process to assess (1) what will happen to the regional roadway system under anticipated growth over the next 25 years at the regional level and (2) the performance of anticipated projects and policies at the regional level. The model can accurately assess the impact of growth on arterials and collector-level facilities when summarized at the regional level. Below the regional-level summaries, the model can accurately assess the performance of arterial and collector-level facilities provided they are summarized at the corridor level. Travel models cannot assess local road network impacts because these facilities are abstractly represented in models as centroid connectors.

The MVP model is a traditional four-step model implemented in TransCAD and calibrated to 2019 traffic counts. It includes trip generation, trip distribution, mode choice, and traffic assignment, along with components for commercial vehicles and special markets. The model covers five districts, including Anchorage and the Mat-Su Borough, with detailed zones in the MVP area.

Key findings show that by 2050, daily VMT in the Mat-Su will increase by approximately 36 percent, and VHT by 35 percent. Delay will rise but remain approximately 1 percent of the total VHT region-wide. Most roads will continue to operate in a state of steady flow, although localized congestion will persist on major corridors such as Parks Highway, Palmer-Wasilla Highway, and Knik-Goose Bay Road.

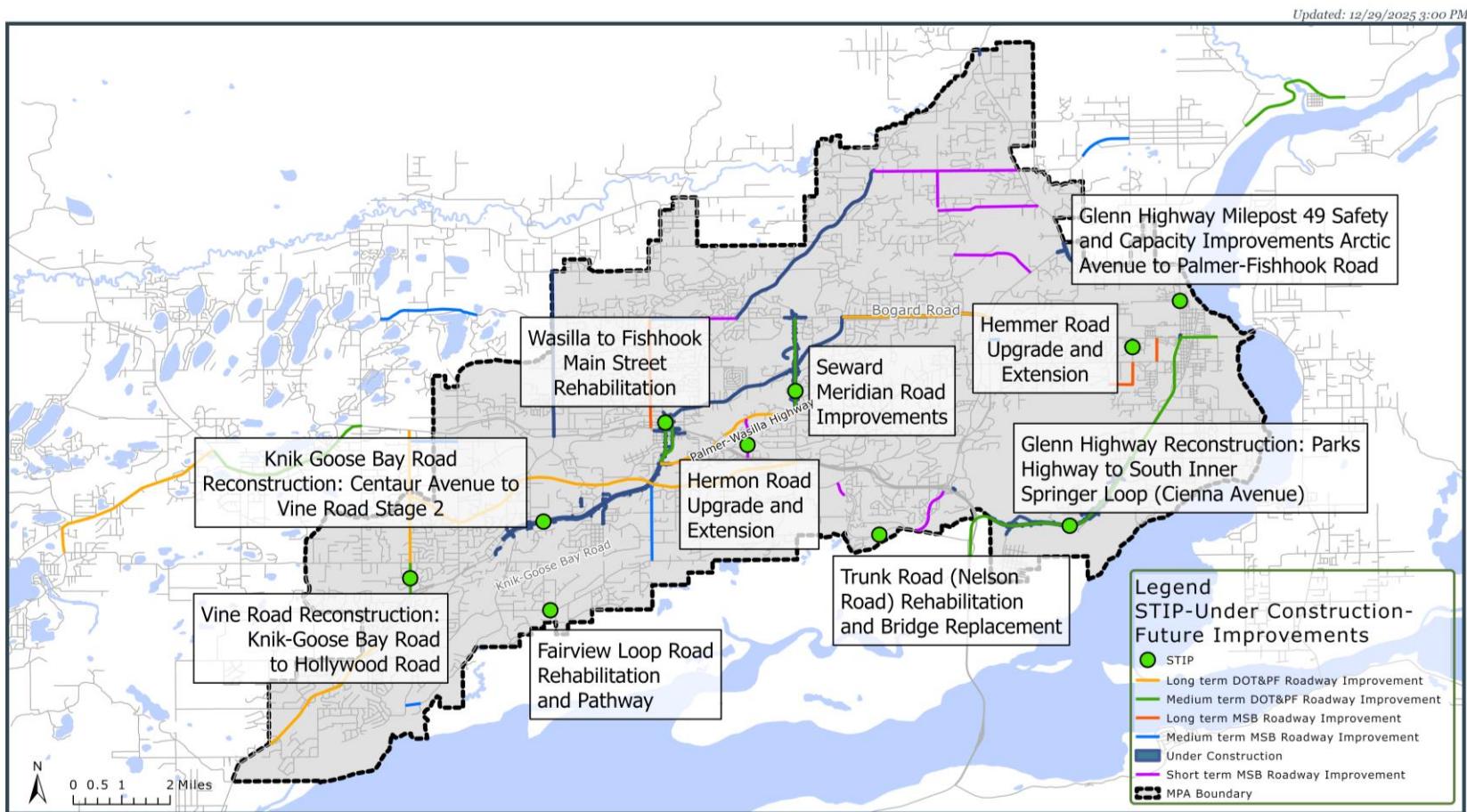
For future planning, the model provides a screening tool for identifying priority corridors and evaluating potential projects. It should be complemented by detailed operational analyses for intersections and corridors where queuing and signal control are critical. The insights from the model will inform both long-range strategies in the MTP and near-term programming in the TIP, ensuring that transportation investments align with regional growth and community priorities.

The 2050 baseline scenario, which includes projects within the MPA that are in design or programmed for completion before 2050, demonstrates that while the committed network can accommodate much of the projected growth, certain corridors will require targeted improvements. Persistent congestion on Parks Highway and emerging hot spots on Palmer-Wasilla Highway and Knik-Goose Bay Road highlight the need

for strategic investments. The model also underscores the importance of multimodal planning, as low-density development and limited transit service challenge efforts to reduce reliance on personal vehicles.

The comprehensive TDM Report will be provided in Appendix F once the final model run has occurred.

4.1 CURRENT AND PLANNED PROJECTS


Figure 4-1 presents projects currently in construction or planned in the Statewide Transportation Improvement Program (2024–2027). These roadway projects primarily address motor vehicle congestion, safety, and air quality or pavement condition, but may include improvements to other modes of travel.

Appendix E includes the full project list for the Statewide Transportation Improvement Program (STIP) and project lists from existing regional plans. In addition to the STIP, the MPA benefits from a wide range of projects identified in recent planning efforts, including the MSB BPP, MSB CSAP, and MSB OSHP. These plans collectively identify near-, mid-, and long-term projects that address multimodal needs, safety, connectivity, and system preservation.

Key project types include:

- / **Major corridor reconstructions and capacity expansions** (e.g., Knik-Goose Bay Road, Glenn Highway, Palmer-Wasilla Highway, and Bogard Road), which are designed to address congestion, improve safety, and accommodate future growth.
- / **Intersection and access management improvements** to enhance safety and traffic flow, as recommended the CSAP and OSHP.
- / **Bicycle and pedestrian network enhancements**, including new separated pathways, shoulder widenings, and crossing improvements, to support nonmotorized travel and improve safety for all users.
- / **Transit and freight system upgrades**, such as new or improved transit facilities, park-and-ride lots, and freight corridor enhancements, supporting regional mobility and economic vitality.
- / **Ongoing maintenance and asset management programs** to preserve pavement condition, upgrade signage and lighting, and ensure the long-term reliability of the transportation network.

Appendix A outlines requirements for an MTP and identifies if the 2035 LRTP meets those requirements. Appendix B is a summary of a review of recent plans that were used to inform this report. Appendix C is an analysis of the MSB's Long-Range Transportation Plan that compares the LRTP goals to the national planning goals that MVP must follow. Appendix D lists all projects found in the LRTP. Appendix E compiles project lists from the STIP, BPP, CSAP, OSHP, and the capital improvement programs of Palmer and Wasilla.

MVP Metropolitan Transportation Plan

STIP 2024-2027, Under Construction, and Future Roadway Improvements

MATSU VALLEY
PLANNING for
TRANSPORTATION

MatSu Valley Planning for Transportation - Metropolitan Transportation Plan

Figure 4-1. Statewide Transportation Improvement Program Projects (2024-2027).

5.0 REFERENCES

Alaska Department of Labor and Workforce Development, 2022.

Alaska Department of Labor and Workforce Development, 2024. "Alaska Population Estimates," accessed August 11, 2025, from <https://live.laborstats.alaska.gov/data-pages/alaska-population-estimates>

Alaska Department of Labor and Workforce Development, 2025. "Alaska Population Projections," accessed November 11, 2025, from <https://live.laborstats.alaska.gov/article/alaska-population-projections>

Alaska Department of Transportation and Public Facilities, 2022. *Alaska Moves 2050 Statewide Freight Plan*, accessed from https://dot.alaska.gov/alaskamoves2050/docs/25697_Alaska_Strategic_Freight_Plan_REDUCED_122222.pdf

Alaska Department of Transportation and Public Facilities, 2025. "Alaska DOT&PF Statewide Functional Classification Update of All Public Roads, accessed December, 2025 from <https://dot.alaska.gov/dmio/tarp/pub/Criteria-for-Functional-Classification-of-Alaska-Roadways-020325.pdf>

Alaska Department of Transportation and Public Facilities, n.d. "Alaska Department of Transportation and Public Facilities Traffic Analysis and Data Application," accessed from <https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp>

Alaska Railroad, 2024. *Alaska Railroad Business Facts – Freight Services 2024*, accessed from https://www.alaskarailroad.com/sites/default/files/Communications/Business_Fact_Sheet_Freight_2025.pdf

Alaska Railroad, 2024. *Gravel Train Traffic: Information and Impacts on Glenn Highway Access*, accessed from https://www.alaskarailroad.com/sites/default/files/Communications/2024_Palmer%20Constituent%20flyer_mailing.pdf

Alaska Railroad, 2024. *Port MacKenzie Rail Extension*, accessed from https://www.alaskarailroad.com/sites/default/files/Communications/2024_Port_MacKenzie_Rail_Extension.pdf

Alaska Railroad Corporation, 2025a

Alaska Railroad Corporation, 2025b

American Strategies, 2022. *Matanuska-Susitna Valley Smart Growth*, National Association of REALTORS.

Drakewell, 2025. AK DOT&PF, *Alaska Traffic Data – Public Traffic Count Map*, accessed from <https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp>

Federal Highway Administration, 2022. "2022 Annual Agency Profile – Valley Transit (NTD ID 00327)," accessed from <https://www.transit.dot.gov/ntd/transit-agency-profiles/valley-transit-1>

Federal Highway Administration, 2022. "2022 Annual Agency Profile – Sunshine Transit (NTD ID 00399)," accessed from
https://www.transit.dot.gov/sites/fta.dot.gov/files/transit_agency_profile_doc/2022/00399.pdf

Federal Highway Administration, 2022. "2022 Annual Agency Profile – Chickaloon Native Village (NTD ID 00030)," accessed from
https://www.transit.dot.gov/sites/fta.dot.gov/files/transit_agency_profile_doc/2022/00030.pdf

Federal Highway Administration, 2023. *Highway functional classification: Concepts, criteria and procedures*, U.S. Department of Transportation, accessed from
https://rosap.ntl.bts.gov/view/dot/72430/dot_72430_DS1.pdf

Federal Highway Administration, 2023. "National Highway Freight Network Map and Tables for Alaska, 2022," published March 11, 2023, at
https://ops.fhwa.dot.gov/freight/infrastructure/ismt/state_maps/states/alaska.htm

Federal Highway Administration, n.d. "National Highway Freight Network," accessed from
<https://ops.fhwa.dot.gov/freight/infrastructure/nfn/index.htm>

Florida Department of Transportation, 2023. *Multimodal Quality/Level of Service Handbook*, prepared by the State of Florida Department of Transportation, Tallahassee, FL.

HDR, Inc., 2016. *Alaska State Rail Plan*, prepared for Alaska Department of Transportation and Public Facilities. Accessed from <https://dot.alaska.gov/railplan/docs/Rail-Plan-Final-draft.pdf>

Idaho Transportation Department, 2026. "Rathdrum Prairie PEL Study," accessed from
<https://rathdrumprairiepel.com/PIM-2/>

Matanuska-Susitna Borough, 2022. *Matanuska Susitna Borough Official Streets and Highway Plan*, Technical Report and Implementation Plan, adopted November 2022.

Matanuska-Susitna Borough, 2022. *Subdivision Construction Manual*, accessed from
<https://matsu.gov/design-construction-manuals>

Matanuska-Susitna Borough, 2023. *Benefits of the Port MacKenzie Barge Ramp and Cargo Handling Infrastructure Project*, accessed from <https://matsugov.us/docs/general/23048/Port-MacKenzie-Economic-Benefits-Report-4-25-23.pdf>

Matanuska-Susitna Borough, 2024. *MSB Transit Continuity Assembly Presentation*, accessed from
<https://matsugov.us/docs/general/24539/Website-VT-Assembly-Presentation.PDF>

Matanuska-Susitna Borough, n.d. *MSB Transit Development*, accessed from
<https://msbtransit.matsugov.us/>

National Fire Protection Association, 2017. *Standard for Fire Protection Infrastructure for Land Development in Wildland, Rural, and Suburban Areas.*

PDC Inc. Engineers, 2014. *Matanuska-Susitna Borough Safe Routes to School Walk Zone Inventory and Recommendations*, prepared by PDC Inc. Engineers, Fairbanks, AK, for Matanuska-Susitna Borough, Palmer, AK.

Socius Amica LLC, 2023. *Matanuska-Susitna Borough Coordinated Human Services Transportation Plan Update*, prepared for the Matanuska-Susitna Borough.

Transportation Research Board (TRB), 2016. *Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis.*

U.S. Census Bureau, 2025. "Matanuska-Susitna Borough, Alaska," accessed August 11, 2025, from https://data.census.gov/profile/Matanuska-Susitna_Borough,_Alaska?g=050XX00US0217

U.S. Department of Transportation, 2025.

APPENDIX A

CONTENT CONSISTENCY CHECKLIST

APPENDIX A: CONTENT CONSISTENCY CHECKLIST

An MPO shall update and confirm the validity of its MTP at least every 5 years in attainment areas and at least every 4 years in air quality nonattainment and maintenance areas, before the effective date of the plan. Through the planning process, the MPO shall check the plan's consistency with current and forecasted transportation and land use conditions and trends, in accordance with 23 CFR §450.324.

Table 1 outlines requirements for an MTP and identifies if the 2035 LRTP meets those requirements. This will allow the project team to focus on areas where the existing LRTP does not meet current requirements.

The intent is that this table will be updated when the draft MTP has been developed to ensure it is in compliance with federal requirements prior to it being submitted to FHWA for approval.

Table A-1. Federal Requirements Checklist (Page 1 of 3)

Regulatory Citation	Key Requirement	2035 LRTP	
		Yes/No/NA	Comments
450.316(a)	Followed the public participation plan for the MTP process, which included but was not limited to adequate public notice, reasonable opportunity for public comment, use of visualization, available online, and explicit consideration and response to public input	Yes	Needs to be updated
450.316(b)	Plan development included consultation with other planning organizations and stakeholders, including tribes and federal land management agencies.	Yes	Needs to be updated
23 CFR 450.324 (a)	MTP addressed a no less than a 20-year planning horizon as of the effective date?	Yes	Needs to extend past 2046 to have a full 20 year horizon
23 CFR 450.324 (a)	Does the MTP address all the factors described in §450.306?	Yes	Needs to be updated
23 CFR 450.324 (b)	Does the transportation plan include both long-range and short-range strategies/actions that provide for the development of an integrated multimodal transportation system?	Yes	Strategies need to be updated.
23 CFR 450.324 (c)	Is the transportation plan valid and consistent with current and forecasted transportation and land use conditions and trends?	Yes	The plan needs to be updated to reflect existing and currently forecasted conditions
23 CFR 450.324 (e)	Is the transportation plan a coordinated effort between the MPO, the State(s), and the public transportation operator(s) on validating data used in preparing other existing modal plans for providing input to the transportation plan?	Yes	First plan for the MPO
23 CFR 450.324 (e)	Is the plan based on the latest available estimates and assumptions for population, land use, travel, employment, congestion, and economic activity?	Yes	Needs to be updated

Table A-1. Federal Requirements Checklist (Page 2 of 3)

Regulatory Citation	Key Requirement	2035 LRTP	
		Yes/No/NA	Comments
23 CFR 450.324 (f)(1)	Does the plan include: The current and projected transportation demand of goods?	Yes	Needs to be updated.
23 CFR 450.324 (f)(2)	Does the transportation plan include existing and proposed transportation facilities that should function as an integrated metropolitan transportation system, giving emphasis to those facilities that serve important national and regional transportation functions over the forecast period?	Yes	Needs to be updated.
23 CFR 450.324 (f)(3)	Does the transportation plan provide a description of the performance measures and targets used in assessing the performance of the transportation system?	No	Included conceptual performance measures. Need to establish performance measures for the MPO.
23 CFR 450.324 (f)(4)	Does the plan include a system performance report and updates?	No	
23 CFR 450.324 (f)(5)	Does the transportation plan include operational and management strategies to improve the performance of existing transportation facilities to relieve vehicular congestion and maximize the safety and mobility of people and goods?	Yes	Should be re-evaluated.
23 CFR 450.324 (f)(6)	Does the plan include considerations of the results of the congestion management process?	N/A	
23 CFR 450.324 (f)(7)	Does the plan include an assessment of capital investment and other strategies?	Yes	Needs to be updated.
23 CFR 450.324 (f)(8)	Does the plan include transportation and transit enhancement activities?	Yes	Needs to be updated.
23 CFR 450.324 (f)(9)	Does the plan include design concept and design scope for all existing and proposed transportation facilities in sufficient detail.	No	Additional information is needed for some projects. Needs to be updated to include new projects.
23 CFR 450.324 (f)(10)	Discussion of potential environmental mitigation activities and potential areas to carry out these activities.	No	Needs to be developed.
23 CFR 450.324 (f)(11)	Does the plan include a financial plan?	No	Needs to be developed.
23 CFR 450.324 (f)(12)	Does the plan include pedestrian walkway and bicycle transportation facilities?	Yes	Needs to be updated.

Table A-1. Federal Requirements Checklist (Page 3 of 3)

Regulatory Citation	Key Requirement	2035 LRTP	
		Yes/No/NA	Comments
23 CFR 450.324 (g)(1) & (2)	Is the transportation plan prepared in consultation with State and local agencies responsible for land use management, natural resources, environmental protection, conservation, and historic preservation? This may include either: (1) Comparison of transportation plans with State conservation plans or maps, if available; or (2) Comparison of transportation plans to inventories of natural or historic resources, if available.	Yes	Needs to be updated.
23 CFR 450.324 (h)	Does the plan integrate the priorities, goals, countermeasures, strategies, or projects for the Metropolitan Planning Area contained in the HSIP?	No	Needs to be updated.
23 CFR 450.324 (j)	Does the transportation plan include the development of multiple scenarios based on the needs of its communities? (Optional)	N/A	
23 CFR 450.324 (j)	Does the transportation plan provide individuals, affected public agencies, public transportation employees, public ports, freight shippers, providers of freight transportation services, private providers of transportation, users of public transportation and/or pedestrian and bicycle transportation facilities, the disabled and other interested parties with a reasonable opportunity to comment on the transportation plan using the public participation plan developed under §450.316(a).	Yes	Needs to be updated.
23 CFR 450.324 (k)	Does the MPO publish or otherwise make readily available the MTP for public review, including (to the maximum extent practicable) in electronically accessible formats and means, such as the World Wide Web?	Yes	Needs to be updated.
23 CFR 450.324(l)	Does the transportation plan include an illustrative list of additional projects included in the financial plan under paragraph (f)(11) of this section?	No	2 mega-projects were identified but not a complete list of illustrative projects.
23 CFR 450.324(l)	Does the plan require a conformity determination in accordance with the Clean Air Act and the EPA transportation conformity regulations?	No	Not required.

APPENDIX B

PLAN REVIEW SUMMARY

APPENDIX B: PLAN REVIEW SUMMARY

To inform the development of the MVP MTP, a comprehensive review of existing local, regional, and statewide transportation plans was conducted. These documents provide essential context on current transportation policies, infrastructure, safety strategies, multimodal priorities, and funding frameworks that shape the MSB and the broader Alaska transportation system. The reviewed plans span a range of focus areas—from long-range roadway planning and nonmotorized transportation to freight movement, transit feasibility, and coordinated human services. Together, they offer a foundational understanding of existing conditions and strategic direction, ensuring that the MVP MTP builds upon established goals while addressing emerging needs and opportunities. Key documents reviewed for the Plan Review include:

- / ***Matanuska-Susitna Borough Comprehensive Safety Action Plan (2025) (CSAP)***. The CSAP was developed as part of the U.S. Department of Transportation Safe Streets and Roads for All (SS4A) program to provide funding for plans and projects that prevent deaths and serious injuries on roadways. The CSAP can be used to secure funding to implement recommended strategies and projects through the SS4A grant program and other funding sources.
- / ***Statewide Transportation Improvement Program (2024-2027) (STIP)***. The STIP identifies, prioritizes, and allocates anticipated funding for transportation improvements over a 4-year period. The STIP represents a consensus among local, state, and regional offices for which transportation improvements should be implemented in the near term.
- / ***2023–2024 Alaska Strategic Highway Safety Plan (2023) (SHSP)***. The SHSP is a statewide CSAP that provides a coordinated framework around which safety stakeholders unite to reduce highway fatalities and serious injuries on all public roads.
- / ***Matanuska-Susitna Borough Bicycle and Pedestrian Plan (2023) (BPP)***. The BPP was developed to improve nonmotorized transportation in the borough. The plan includes policy, infrastructure, and program recommendations for the near, mid, and long term.
- / ***Matanuska-Susitna Borough Coordinated Human Services Transportation Plan Update (2023) (CHSP)***. The focus of this plan is to improve transportation options and access to services for targeted population groups, including older adults, youth, disabled individuals, veterans, individuals living in poverty, indigenous populations, and non-English speaking individuals. The plan is updated every 5 years.
- / ***Matanuska-Susitna Borough Official Streets and Highway Plan (2022) (OSHP)***. The OSHP is a map-based plan that shows the existing roadway network, potential future road connections, functional classification, and roadway design aspects.
- / ***Statewide Freight Assessment – Alaska Moves 2050 (2021)***. The Statewide Freight Assessment was created as part of the Long-Range Transportation Plan & Freight Plan and provides a high-level background about freight transportation within Alaska.
- / ***2035 Matanuska-Susitna Borough Long-Range Transportation Plan (2017) (LRTP)***. The LRTP helps guide policy development, transportation improvements, and funding decisions in the MSB and State of Alaska for both the near and long term.
- / ***Mat-Su Transit Feasibility Assessment (2016)***. The Transit Feasibility Assessment provides a detailed evaluation of existing and future transit services and recommended improvements with the current system.

- / **Statewide Long-Range Transportation Plan (Let's Keep Moving 2036) (2016).** This plan establishes transportation policies, goals and implementing actions for the Alaska Department of Transportation through 2036. *This plan is currently being updated.*
- / **Anchorage/Matanuska-Susitna Borough Regional Transit Authority Plan (2011).** This plan, which was established in partnership with the Municipality of Anchorage, focuses on developing a Regional Transit Authority to better plan and coordinate public transportation services.

B.1 EMERGING THEMES

Values and Strengths

- / **Safety:** improving the safety of the regional transportation network is a top priority.
- / **Coordinated planning:** transportation planning needs to account for current land uses, planned development, and community priorities.

Challenges and Barriers

- / **Funding:** project needs are always greater than available funding.
- / **Coordination and collaboration:** there are many government entities responsible for planning within the MVP boundary, as well as community organizations, service providers, and other individuals and entities relevant to transportation planning.

Goals, Objectives, Strategies

- / **Reduce serious and fatal injury crashes:** there are many goals and strategies related to improving safety, particularly with the aim of eliminating serious and fatal injury crashes.
- / **Support people and the economy:** the transportation network should be deliberately planned to support the movement of people, goods, and services.
- / **Increase Safety:** The transportation network should be safe for all modes of transportation.

Conflicts and Gaps

- / **Missing plans:** limited information is available about Tribal transportation planning.

APPENDIX C

MSB LONG-RANGE TRANSPORTATION PLAN GAP ANALYSIS: LOCAL PRIORITIES AND FEDERAL REQUIREMENTS

APPENDIX C: MSB LONG-RANGE TRANSPORTATION PLAN GAP ANALYSIS: LOCAL PRIORITIES AND FEDERAL REQUIREMENTS

MVP is in the process of creating goals and strategies to guide the development and implementation of the MTP. The Matanuska-Susitna Borough (MSB) Long-Range Transportation Plan (LRTP) is a key source of inspiration for MVP's MTP; however, MVP must ensure its goals and strategies follow federal planning requirements. This analysis compares the LRTP goals to the national planning goals that MVP must follow.

C.1 ANALYSIS

The Moving Ahead for Progress in the 21st Century Act (MAP-21), signed into law in 2012, was a 2-year funding and authorization bill to govern United States federal surface transportation spending. The Act established a performance- and outcome-based program with an objective for states and Metropolitan Planning Organizations (MPOs) to invest in projects that will make progress toward national performance goals for the Federal highway program. MAP-21's performance management approach was continued in 2021 with the passage of the Infrastructure Investment and Jobs Act (IIJA), the current transportation funding law.

The national goals, as outlined in Section 150(b) of MAP-21 and continued in the IIJA, include:

- / Safety – To achieve a significant reduction in traffic fatalities and serious injuries on all public roads.
- / Infrastructure condition – To maintain the highway infrastructure asset system in a state of good repair.
- / Congestion reduction – To achieve a significant reduction in congestion on the National Highway System (NHS).
- / System reliability – To improve the efficiency of the surface transportation system.
- / Freight Movement and Economic Vitality – To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and support regional economic development.
- / Environmental sustainability – To enhance the performance of the transportation system while protecting and enhancing the natural environment.
- / Reduced project delivery delays – To reduce project costs, promote jobs and the economy, and expedite the movement of people and goods by accelerating project completion through eliminating delays in the project development and delivery process, including reducing regulatory burdens and improving agencies work practices.

Table C-1 compares the MSB 2035 LRTP goals and objectives to the MAP-21 national goals.

Table C-1. Comparison of MSB LRTP Goals and Objectives to National Planning Goals (Page 1 of 2)

National Planning Goals	LRTP Goals	Strategy
Safety	5. Make Transportation Safer	Improve Transportation Safety Education Continue the Safe Routes to School Program Continue Support of Highway Safety Improvement Program Develop and Implement Access Development Plans for all Major Collectors and Arterial Roadways within the MSB
Infrastructure Condition	4. Improve Mobility	Develop an Asset Management Program
Congestion Reduction	2. Promote Transportation Choices 3. Improve Connectivity	Create Transit Supportive Development Strategic Access Development Plans Support Improved Passenger Rail Service Expand Vanpool Program Consider Additional Demand-Response Service Encourage Ride-Sharing Services Develop an Active Transportation Master Plan Adopt a Policy Requiring Bike/Pedestrian Improvements near/along Transit Corridors Develop Park-and-Ride Facilities Improve Awareness of Transportation Choices Establish a Public Facility Siting Policy Develop a Complete Streets Policy Conduct a Roadway Network Connectivity Analysis Establish a Subdivision Connectivity Policy Establish Nonmotorized Design Requirements on All Major Collector Roads and Above in the MSB Core Area Improve Traffic Signal Coordination Develop and Implement Access Development Plans for all Major Collectors and Arterial Roadways within the MSB
System Reliability	4. Improve Mobility	Implement Projects and Programs that Reduce Congestion and Travel Delays and Improve Travel Times
Freight Movements and Economic Vitality	6. Support Economic Vitality	Explore Remote Land Use Access & Infrastructure Issues Implement Projects and Programs that Reduce Congestion and Travel Delays and Improve Travel Times Improve Traffic Signal Coordination Improve Access to Jobs for Both Residents and Employers Improve Access to Education for All Students within the MSB Identify and Design Freight Routes Continue Aviation Land Use Policy Development Encourage the Continued Development of Port MacKenzie and the Completion of the Port MacKenzie Rail Extension

Table C-1. Comparison of MSB LRTP Goals and Objectives to National Planning Goals (Page 2 of 2)

National Planning Goals	LRTP Goals	Strategy
Environmental Sustainability	1. Improve Transportation & Land Use Connection 7. Enhance Environmental Quality	Update the MSB Comprehensive Plan Continue to Update Subdivision Regulations Continue Integration of the MSB Subdivision Construction Manual Support Use of Alternative Fuels and Technologies Coordinate with Resource Agencies on Projects Promote TDM/TSM Measures Review Roadway Design Guidelines to Promote Sustainability Develop Green Streets Policy Develop Municipal Separate Storm Sewer System Program Continue Fish Passage Replacement Program Improve Air Quality
Reduced Project Delivery Delays		Coordinate with Resource Agencies on Projects Develop an Asset Management Program

Note: The LRTP strategy "Expand Wayfinding Strategies for Transit and Trails" was not included in the above table as it does not fall under one of the National Planning Goals.

Based on Table C-1, the 2035 LRTP goals do not include a goal related to reducing project delivery delays. In addition, the 2035 LRTP goal related to infrastructure condition is not fully aligned with the national planning goal. The 2035 LRTP goals are a reasonable starting point for the development of the MVP MTP goals and strategies, but MVP will need to refine the goals to better align with national planning goals and reflect the priorities of all entities in the MPA.

APPENDIX D

MSB LONG-RANGE TRANSPORTATION PLAN PROJECT LIST (PLANNED, IN PROGRESS, AND COMPLETED)

APPENDIX D: MSB LONG-RANGE TRANSPORTATION PLAN PROJECT LIST (PLANNED, IN PROGRESS, AND COMPLETED)

Project ID From Plan	Project Name	Description	Purpose
Planned			
8	Point MacKenzie Road Improvement, MP 21.8 to 23	Improvements to the road leading into the Port MacKenzie area	Congestion Relief
15a	Glenn Highway MP 84.5–92 Rehabilitation - Long Lake Section	Improve alignment and mitigate rock fall. Design.	Asset Management
16a	Glenn Highway Rehabilitation MP 79–84.5	Improve alignment and mitigate rock fall. Design, right-of-way, utilities.	Asset Management
M3	Nelson Road Extension	Extend Nelson Road north to Fairview Loop Road, providing secondary access to the area south of the Trunk Road-Parks Highway interchange	Congestion Relief, Safety
22a	Knik-Goose Bay Road - Settlers Bay to South Alix Drive	Widen to four lanes with appropriate intersection improvements and pedestrian amenities (distance of approximately 3 miles). Design, ROW, Utilities	Congestion Relief
23a	Parks Highway Alternative Corridor - Segment 1 Parks Highway/Seward Meridian Parkway to Knik-Goose Bay Road	Construct a controlled access highway south of Wasilla to move through traffic around Wasilla. Corridor preservation is the highest priority.	Congestion Relief
24	Glenn/Parks Interchange - Hospital Access Improvements	Develop additional accesses to the Mat-Su Regional Medical Center, which is currently only served by a single access point. Develop Old Mat Road as a frontage road to the Glenn Highway. Open Duchess Drive at Trunk Road to left turn ingress and egress.	Safety/Access
25	Old Glenn Highway - New Glenn Highway to Airport Road	Expand to a five-lane section.	Congestion Relief
M10	Jensen Road Extension to Soapstone Road	This will provide direct access from the growing Soapstone Road area to Palmer-Fishhook Road, allowing more direct access to Trunk Road and the Parks Highway.	Capacity and Safety

Project ID From Plan	Project Name	Description	Purpose
M14	Settlers Bay Drive Extension to S. Hayfield Drive	Connect these two routes to allow for secondary access from the Settlers Bay Development to Fairview Loop Road via South Hayfield Drive.	Connectivity and Safety
10c	Vine Road Improvements - Hollywood Boulevard to Parks Highway	Project will rehabilitate the MSB owned portion of Vine Road to an improved four-lane facility, including drainage, repaving, lighting, pedestrian facilities, and safety improvements as necessary.	Congestion Relief, Connectivity, Safety
22b	Knik-Goose Bay Road - Settlers Bay to South Alix Drive Widen to 4 Lanes Construction		Congestion Relief
23b	Parks Highway Alternative Corridor - Segment I: Parks Highway/Seward Meridian Parkway to Knik-Goose Bay Road: Construction		Congestion Relief
26	Palmer-Wasilla Highway: Seward Meridian Parkway to Fred Meyers Widen to 5 Lanes	Add two additional travel lanes and widen Cottonwood Creek Bridge to five lanes.	Congestion Relief
28	Big Lake Road - North Shore Drive to Parks Highway Reconstruction	Reconstruct Big Lake Road to a four-lane facility with pedestrian amenities	Congestion Relief
30	Palmer-Wasilla Highway Extension Reconstruction	Expand to a five-lane facility between the Parks Highway and Knik-Goose Bay Road.	Congestion Relief Capacity
31	Parks Highway Alternative Corridor Segment 2: Knik-Goose Bay Road to Vine Road: Design, ROW, Utilities, Construction		Congestion Relief
M18	Lucille Street - Parks Highway to Spruce (City of Wasilla) 4-Lane Upgrade	Upgrade Lucille Street to a four-lane urban section with drainage, intersection improvements, and pedestrian amenities (distance of 1.25 miles).	Congestion Relief
ILL	Expand the Glenn Highway from Eklutna to the Glenn/Parks Interchange to six lanes		

Project ID From Plan	Project Name	Description	Purpose
ILL	Upgrade Trunk Road Interchange to accommodate westbound left turn movements		
ILL	Pave Hatcher Pass Road, MP 18 to 20		
ILL	Widen Knik-Goose Bay Road from Centaur to Settlers Bay Drive to six lanes		
ILL	Widen Knik-Goose Bay Road from Alix Drive to Point MacKenzie Road to four lanes		
ILL	Expand the Parks Highway from the Glenn/Parks Interchange to Seward Meridian Parkway to six lanes		
ILL	Reconstruction of Pittman Road		
ILL	West Carmel Drive Reconstruction		
ILL	Knik Arm Crossing Frontage Roads at Port MacKenzie Access		
ILL	Bogard/Seldon Roads Corridor - 4-Lane Upgrade from New Trunk to Bogard/Seldon Intersection		
ILL	Seward Meridian - South Extension to Fairview Loop		
ILL	New Big Lake Collector Road - North Shore to West Susitna Parkway		
ILL	Foothills Drive Reconstruction		
ILL	Oilwell Road Upgrade - Petersville Road to Moose Creek Bridge		
ILL	Sylvan Road to Hollywood Upgrade and Extension South to Hollywood Drive		
ILL	South Big Lake Road Town Center Realignment		


Project ID From Plan	Project Name	Description	Purpose
ILL	Seldon Road Extension - Pittman Road to Parks Highway		
ILL	Point MacKenzie Road - Port MacKenzie to Ayshire Rehabilitation		
In Progress			
2	Glenn Highway - Erosion Protection MP 63 and MP 64	Provide erosion protection at locations along the Glenn Highway between Sutton and Chikaloon where the road is susceptible to erosion and failure under normal flow conditions in the braided sections of the Matanuska River.	Safety, Asset Management
4	Knik-Goose Bay Road Widening - Vine Road to Settlers Bay Drive	Knik-Goose Bay Road Safety Corridor project development activities for the safety corridor, including the rehabilitation of Knik-Goose Bay Road between Vine Road and Settlers Bay Drive. This is a State funded project, separate from, but coordinated with, the Federally funded project on Knik-Goose Bay Road from Centaur Avenue to Vine Road.	Congestion Relief
9	Seward Meridian Parkway	Reconstruct Seward Meridian Parkway between the Palmer-Wasilla Highway and Bogard Road to a four-lane arterial with a pedestrian trail. Extend the Seward Meridian Parkway from Bogard Road to Seldon Road as a two-lane arterial with pedestrian facilities.	Congestion Relief
10a	Vine Road Improvements - Knik-Goose Bay Road to Hollywood Boulevard	Project will rehabilitate the State owned portion of Vine Road to an improved 2-lane facility, including drainage, repaving, lighting, pedestrian facilities, and safety improvements as necessary.	Congestion Relief
12	Wasilla-Fishhook Road/Main Street (Yenlo Couplet)	Create a North-South Couplet to improve traffic movement in these directions in downtown Wasilla. Main Street and Knik-Goose Bay Road will be the southbound leg and Talkeetna and Yenlo will be the northbound leg.	Safety
13a	DOT&PF MSB Intersection Improvement Program	Assess and construct traffic signal or roundabouts at intersections that meet need. Locations to be considered over the entire life of the LRTP include, but are not limited to: Hollywood/S. Big Lake, Hollywood/Vine, Spruce/Lucille, Peck/Wasilla-Fishhook, Seldon/Church, Seldon/Caribou, Glenn/Palmer-Fishhook, Bogard/Engstrom/Green Forest	Safety

Project ID From Plan	Project Name	Description	Purpose
14a	Glenn Highway MP 53-56 Reconstruction - Moose Creek Canyon	Major reconstruction of the Glenn Highway through the Moose Creek Canyon. The highway will be straightened and a new 800-foot bridge spanning Moose Creek will be reconstructed. Right-of-way.	Asset Management
M1	South Trunk Road Extension Phase 2	Complete extension from Parks Highway to Nelson Road, including bridge over the Alaska Railroad and replacing the bridge over Wasilla Creek.	Congestion Relief
M2	Hermon Road Reconstruction and Extension - Parks Highway to Palmer-Wasilla Highway	Upgrade existing roadway to four lanes and new four-lane construction to provide an additional north-south corridor in the Wasilla Commercial District (distance of 0.8 mile).	Congestion Relief
M4a	Seldon Road Upgrade - Wasilla-Fishhook to Snow Goose	First phase of the project to reconstruct Seldon Road, between Wasilla-Fishhook and Lucille Street, to minor arterial highway standards. This section of Seldon road has pavement grade, sight distance, drainage, and embankment issues. Includes pedestrian facilities.	Capacity Improvement
M5	Engstrom Road Congestion Relief	assess various alternatives to relieve congestion on Engstrom Road and provide a second access to Trunk Road and or Palmer-Fishhook Road	Congestion Relief, Safety
M6	Engstrom North Extension to Tex AI	Construct an upgraded two-lane major collector from the northern terminus of Engstrom Road to its intersection with Tex AI Drive	Congestion Relief, Safety
M7	Tex AI Road Upgrade and Extension	Construct an upgraded two-lane major collector from Wasilla-Fishhook Road to its existing terminus. Extend Tex AI Drive east to Palmer-Fishhook Road.	Congestion Relief, Safety
9b	Seward Meridian Parkway – Palmer-Wasilla Highway to Seldon Road	Reconstruct Seward Meridian Parkway between the Palmer-Wasilla Highway and Bogard Road to a four-lane arterial with a pedestrian trail. Extend the Seward Meridian Parkway from Bogard Road to Seldon Road as a two-lane arterial with pedestrian facilities.	Congestion Relief
10b	Vine Road Improvements - Knik-Goose Bay Road to Hollywood Boulevard	Project will rehabilitate the State owned portion of Vine Road to an improved 2-lane facility, including drainage, repaving, lighting, pedestrian facilities, and safety improvements as necessary.	Congestion Relief
11b	Wasilla-Fishhook Road/Main Street (Yenlo Couplet)	Construct the North-South Couplet to improve traffic movement in these directions in downtown Wasilla. Main Street and Knik-Goose Bay Road will be the southbound leg and Talkeetna and Yenlo will be the northbound leg.	Congestion Relief

Project ID From Plan	Project Name	Description	Purpose
14b	Glenn Highway MP 53-56 Reconstruction - Moose Creek Canyon	Major reconstruction of the Glenn Highway through the Moose Creek Canyon. The highway will be straightened and a new 800-foot bridge spanning Moose Creek will be constructed.	Asset Management
M4b	Upgrade Seldon Road from Snow Goose to Lucille Street	Phase 2 of the reconstruction of Seldon Road between Wasilla-Fishhook and Lucille Street to major collector or higher standards. This section of Seldon Road has grade, sight distance, drainage, embankment, and failing pavement issues.	Capacity and Congestion Relief
M8	Fern Street	Upgrade Fern Street between Knik-Goose Bay Road and Fairview Loop Road, creating an upgraded north-south collector route.	Congestion Relief and Connectivity
M9	Seldon Road - Beverly Lake Road to Pittman Road	This project completes the Bogard-Seldon corridor from the Glenn Highway to Pittman Road.	Capacity and Safety
M11	Museum Drive Extension - West to Vine Road	Provides local frontage road connections to the south side of the Parks Highway	Congestion Relief and Safety
M12	Hemmer Northern Extension to Bogard Road East Extension	Extend Hemmer Road north to Bogard Road to provide a more direct connection. The distance less than 1/4 mile, right-of-way is needed.	Connectivity
27	South Big Lake Road - North Shore Drive to Hollywood Road Rehabilitation	Rehabilitate Big Lake Road from North Shore Drive through Big Lake Town Center to Hollywood Road with appropriate pedestrian amenities.	Asset Management
29	Bogard Road Between Seldon and Trunk	Widen to four lanes to accommodate increased traffic with pedestrian facilities.	Congestion Relief Capacity
M16	Lucille Street - Spruce to Seldon (MSB) 4-Lane Upgrade	Upgrade Lucille Street to a four-lane rural section with drainage, intersection improvements, and pedestrian amenities (distance of 1.0 mile).	Congestion Relief
M17	Valley Pathways School Access Improvement	Construct a new road from Valley Pathways at the end of France Road east to intersect with the signalized intersection at the Palmer-Wasilla Highway and Hemmer Road.	Congestion Relief
ILL	Johnson Road Upgrade and Extension to Knik-Goose Bay Road		

Project ID From Plan	Project Name	Description	Purpose
ILL	Point MacKenzie Road - Knik-Goose Bay Road to Ayshire Reconstruction upgraded two-lane facility		
ILL	West Susitna Parkway Extension to Fish Creek Agricultural Area		
ILL	West Susitna Access Development Program		
ILL	Burma Road Construction - Upgrade and Realign Burma Road from Point MacKenzie Road to West Susitna Parkway		
Completed			
1a	Glenn Highway MP 34–42 Reconstruction (Parks to Arctic Renovation, 4-Lane)	Upgrade the NHS Glenn Highway to a four-lane arterial with frontage roads where appropriate from the Glenn/Parks Interchange through Palmer to the Arctic/Old Glenn Highway intersection.	Congestion Relief
3	Knik-Goose Bay Road	Widen Knik-Goose Bay Road to a divided four-lane facility from Centaur Avenue to Vine Road, a distance of 6.44 miles. Scope includes separate bike and pedestrian facilities and safety improvements, including rumble strips and combined access points. Project will be built in multiple phases.	Congestion Relief
6	Parks Highway MP 43.5–48.3 - Lucus Road to Pittman Road	Widen Parks Highway to four lanes, with attendant traffic and safety improvements, between Wasilla and Pittman Road	Congestion Relief
7a	Parks Highway MP 48.8–52.3 - Pittman Road to Big Lake Road Reconstruction	Widen Parks Highway to four lanes, with attendant safety improvements, between Pittman Road and Big Lake Cutoff	Congestion Relief
12	Palmer-Wasilla Highway	Near-term HSIP project to address immediate traffic and safety issues along this Highway Safety Corridor by establishing a center turn lane to improve traffic flow.	Safety
17b	Parks Highway Bridge Replacement - Montana and Sheep Creek	The new bridges will have top widths that match the roadway width at the time of construction. Pedestrian facilities will be addressed.	Asset Management, Safety

Project ID From Plan	Project Name	Description	Purpose
1b	Glenn Highway MP 34–42 Reconstruction (Parks to Arctic Renovation, 4-Lane)	Complete the upgrade the NHS Glenn Highway to a four-lane arterial with frontage roads where appropriate from the Glenn/Parks Interchange through Palmer to the Arctic/Old Glenn Highway intersection/	Congestion Relief
7b	Parks Highway MP 48.8–52.3 - Pittman Road to Big Lake Road Reconstruction	Widen Parks Highway to four lanes, with attendant safety improvements, between Pittman Road and Big Lake Cutoff	Congestion Relief
13b	DOT&PF MSB Intersection Improvement Program	Assess and construct traffic signal or roundabouts at intersections that meet need. Locations to be considered over the entire life of the LRTP include, but are not limited to: Hollywood/S. Big Lake, Hollywood/Vine, Spruce/Lucille, Peck/Wasilla-Fishhook, Seldon/Church, Seldon/Caribou, Glenn/Palmer-Fishhook, Bogard/Engstrom/Green Forest	Safety
17b	Parks Highway Bridge Replacement - Montana and Sheep Creek	The new bridges will have top widths that match the roadway width at the time of construction. Pedestrian facilities will be addressed.	Asset Management, Safety
	Ongoing DOT&PF Asset Management and HSIP Programs	Annual funding for future asset management and HSIP projects estimated at \$4.0 million annually.	Asset Management and Safety
M13	Katherine Drive Connection to Trunk Road	This project will connect Mid-Town Estates to Trunk Road at the already constructed median break and turn pockets on Trunk Road.	Connectivity and Safety
	Ongoing DOT&PF Asset Management and HSIP Programs	Annual funding for future asset management and HSIP projects estimated at \$8.5 million annually.	Asset Management and Safety
M15	Felton Road Extension - Arctic/Bogard to Palmer-Wasilla Highway	Two-lane extension to provide north-south access from the Palmer-Wasilla Highway to Arctic/Bogard and Palmer High School.	Congestion Relief
ILL	Ayshire Road to Little Su Landing Improvements		
ILL	Smith Road Reconstruction and Pedestrian Pathway		

APPENDIX E

PROJECT LISTS FROM REGIONAL PLANNING EFFORTS

City of Palmer Capital Improvement Program
City of Wasilla Capital Improvement Program
DOT&PF 2024-2027 STIP

APPENDIX E: PROJECT LISTS FROM REGIONAL PLANNING EFFORTS

CITIES OF PALMER & WASILLA – CAPITAL IMPROVEMENT PROGRAM PROJECTS

No transportation improvement plans were identified in Palmer or Wasilla. The following details area transportation improvement projects from recent Capital Improvement Programs (CIPs).

Palmer Transportation-Related CIP Projects 2025-2029

Project	Year of Initiation/Execution	Cost Estimate	Funding Mechanism
ADA Sidewalk Match	2017	\$250,000	COP/Grant
Paving Upgrades/ Street Maintenance	As needed	\$500,000	COP
Traffic Safety Planning	2020	\$135,000	COP
Library Sidewalk	2023	\$190,000	COP
Annual Road Paving	2022	\$600,000	COP
General CIP Pathways	2023	\$464,597	COP
Railroad ROW Improvements	2025	\$500,000	COP

Source: Five-Year Capital Improvement Program for the Fiscal Year Beginning January 1, 2025, and Ending December 31, 2025 [City of Palmer, 2024a and 2024b].

Wasilla Transportation-Related CIP Projects 2026-2030

Project	FY 2026 Proposed	Funding Mechanism
City-Wide ADA Compliance Program	\$100,000	Capital Funds
Street Lighting LED Improvements	\$25,000	Capital Funds
Train Depot	\$515,000	Capital Funds
City Street Paving Project	\$1,200,000	Roads Fund
Road Striping	\$150,000	Roads Fund
Parks Traffic & Safety Improvements	\$250,000	Roads Fund
Alaska Railroad Crossing Improvements	\$20,000	Roads Fund
Riley Avenue Pathway	\$150,000	Roads Fund
Glennwood Railroad Crossing Replacement	\$600,000	Roads Fund
Sidewalk Repairs	\$50,000	Curtis D Menard Sports Center Fund

Source: Capital Improvement Plan – FY2026 Overview [City of Wasilla, 2025a and 2025b].

2024-2027 STATEWIDE TRANSPORTATION IMPROVEMENT PROGRAM (STIP) – AMENDMENT #2 JULY 14, 2025 - APPROVED STIP

PROJECTS

STIP Projects within MPO Boundary

Project Name	Description	Purpose	Time Frame	Funding Mechanism
19217: Highway Safety Improvement Program	The Highway Safety Improvement Program (HSIP) is a federally mandated annual process to evaluate, design, and construct projects that have the greatest potential to reduce the State's roadway fatalities and serious injuries. HSIP aligns with the emphasis areas within the department's Strategic Highway Safety Plan (SHSP). This may also include managing, studying, responding to, and making policies on safety-related issues to improve overall transportation safety.	Safety	2024-2027	STIP (SA, RAIL, VRU, SM SOA, S154 NHPP, S164 NHPP, S154 STBG, SPR NHPP, HSIP AC, NHPP, STBG, S164 STBG)
24596: Knik-Goose Bay Road Reconstruction: Centaur Avenue to Settler's Bay [Parent and Final Construction]	Widen the Knik-Goose Bay Road to a divided 4-lane facility from Centaur Avenue to Settler's Bay, a distance of 8.1 miles. Scope includes separated bike/ped facilities, appropriate safety engineering strategies such as rumble strips and reducing/combining access points that are determined to be most effective at reducing crashes along the road. Cost: \$44.3 million	Safety	2024-2027	STIP (SM SOA, NHPP, NHPP AC)
2503: Wasilla to Fishhook Main Street Reconstruction	Construct a one-way couplet in downtown Wasilla bounded by Bogard Road, Knik-Goose Bay/Main Street, Yenlo/Talkeetna Street and the Palmer-Wasilla Highway. Work will consist of new road construction, lane reconfigurations, signals, new pavement, signing and striping, and sidewalks. Cost: \$70.4 million	Safety	2024-2027	STIP (SM SOA, STBG Flex, STBG Flex AC)
29911: Vine Road Reconstruction: Knik-Goose Bay Road to Hollywood Road	Project will rehabilitate the existing two-lane rural road from Hollywood Boulevard to Knik-Goose Bay Road. The road will be designed to accommodate ongoing traffic growth. Scope includes repairing the roadbed, drainage improvements, repaving, pedestrian accommodations, and possible HSIP safety improvements. Cost: \$16.8 million	Safety	2024-2027	STIP (STBG Flex, SM SOA)

Project Name	Description	Purpose	Time Frame	Funding Mechanism
31330: Glenn Highway Reconstruction: Parks Highway to South Inner Springer Loop (Cienna Avenue)	Reconstruct to four lanes, pathway and shoulders. Accommodate turning movements, add frontage roads, traffic, safety, and intersection improvements, as necessary and feasible. Cost: \$39.9 million	State of Good Repair	2024-2027	STIP (NHPP)
32298: Knik-Goose Bay Road Reconstruction: Centaur Avenue to Settler's Bay [Stage 1]	Widen the Knik-Goose Bay Road to a divided 4-lane facility from Centaur Avenue to Settler's Bay, a distance of 8.1 miles. Scope includes separated bike/ped facilities, appropriate safety engineering strategies such as rumble strips, and reducing/combining access points that are determined to be most effective at reducing crashes along the road. Cost: \$23.4 million	State of Good Repair	2024-2027	STIP (STBG Flex AC, SM SOA, STBG Flex)
32721: Hemmer Road Upgrade and Extension [CTP Award 2019]	Extend and upgrade approximately 0.50 miles of Hemmer Road from the Palmer-Wasilla Highway to Bogard Road consisting of two travel lanes and a center turn lane. Improvements include a traffic signal at the Bogard Road intersection, shoulders, pedestrian and bicycle infrastructure, drainage and safety items. This project was selected in the 2019 DOT&PF Community Transportation Program (CTP) solicitation. Cost: \$2.7 million	Safety	2024-2027	STIP (STBG Flex, STBG 50-200 MVP, SM SOA, STBG)
32722: Hermon Road Upgrade and Extension [CTP Award 2019]	Extend and upgrade Hermon Road from the Parks Highway frontage road (Sun Mountain Avenue) to the Palmer-Wasilla Highway, approximately 0.80 miles. Improvements will include travel and turn lanes, shoulders, pedestrian and bicycle facilities, drainage and safety items along with a new traffic signal at the Palmer-Wasilla Highway intersection. This project was selected in the 2019 DOT&PF CTP solicitation. Cost: \$21.5 million	Economic Vitality	2024-2027	STIP (STBG Flex AC, STBG Flex, SM SOA)
32724: Seldon Road Extension Phase II	Extend Seldon Road from Windy Bottom Road to Pittman Road in Palmer on a new alignment. Improvements include approach roads, parking facilities, pedestrian pathways, drainage improvements, intersection improvements, ADA improvements, roadside hardware and utilities.	Economic Vitality	2025-2027	STIP (STBG Flex AC, STBG 50-200 MVP, SM SOA)
32726: Trunk Road (Nelson Road) Rehabilitation and Bridge Replacement [CTP Award 2019]	Rehabilitate Trunk/Nelson Road from E Fetlock Drive to Wasilla Creek. Replace Wasilla Creek Bridge #2227. Improve pedestrian facilities. Cost: \$5.3 million	State of Good Repair	2024-2027	STIP (STBG Flex, Bridge-HIP, SM SOA)

Project Name	Description	Purpose	Time Frame	Funding Mechanism
33921: Fairview Loop Road Rehabilitation and Pathway [Parent and Final Construction]	Rehabilitate and construct safety improvements along Fairview Loop Road from Top of the World Circle to Cotten Drive in Wasilla. Construct a new multi-use pathway from Top of the World Circle to Fern Street. Work includes shoulder widening, roadside hardware, drainage improvements, and utilities. Cost: \$23.5 million	Safety	2024-2027	STIP (NHPP, SM SOA)
34243: Seldon Road Reconstruction: Wasilla-Fishhook Road to Lucille Street [CTP Award 2023] [Parent]	The project will upgrade Seldon Road, between Wasilla-Fishhook Road and Lucille Street, to an arterial highway standard with a separate pathway to address geometry, safety, and capacity issues. This project was selected in the 2023 DOT&PF CTP solicitation. Two separately awarded 2023 CTP projects are being combined into a parent/child grouping to better coordinate design and construction (34243 and 34242). Cost: \$8.6 million	Safety	2024-2027	STIP (STBG Flex AC, STBG 50-200 MVP, 3PF Local, STBG, SM SOA, STBG Flex)
34302: Pavement and Bridge Preservation Program	Complete pavement and bridge preservation activities to prolong the life of the road pavement, bridges, and safety-related structures. The program includes National Highway System lane delineators, destination and distance signing, pavement marking, signalization, crack sealing, surface treatment drainage, guardrail, illumination, abandoned vehicle program, road surfacing and transfer, road surface treatments, ADA ramp improvements, preservation planning and reconnaissance activities and other refurbishments.	State of Good Repair	2024-2027	STIP (STBG Flex, NHPP, SM SOA, STBG 5-50k, STBG Flex AC, STBG <5k, Bridge-INFRA, STBG, STBG 50-200 FAST, Bridge-HIP, OFF ER, NHPP AC)
34342: Bogard Road Safety and Capacity Improvements [CTP Award 2023]	The project will upgrade Bogard Road, between Trunk Road and Grumman Circle to an arterial highway standard to address safety and capacity issues. The project will construct pathway and will provide safety and capacity improvements, which may include: roundabouts, raised median, widened shoulders, turn lanes, addressing access management issues, improving intersections as necessary, providing an improved clear zone, drainage, and signage. This project was selected in the 2023 DOT&PF CTP solicitation. Two separately awarded 2023 CTP projects and two separately awarded HSIP projects are being combined into a parent/child grouping to better coordinate design and construction. The full project length is Bogard Road from Trunk Road to Grumman Circle. Cost: \$7.3 million	State of Good Repair	2024-2027	STIP (STBG, SM SOA, STBG Flex, STBG 50-200 MVP, SA)

Project Name	Description	Purpose	Time Frame	Funding Mechanism
34433: Fairview Loop Road Rehabilitation and Pathway [Stage 1]	Rehabilitate and construct safety improvements along Fairview Loop Road from Top of the World Circle to Cotten Drive in Wasilla. Construct a new multi-use pathway from Top of the World Circle to Fern Street. Work includes shoulder widening, roadside hardware, drainage improvements, and utilities. Cost: \$16.5 million	Safety	2024-2027	STIP (STBG Flex, SM SOA)
31841: Glenn Highway Arctic Avenue to Palmer-Fishhook Road Safety and Capacity Improvements [SOGR 2018]	Construct safety and capacity improvements on the Glenn Highway, Arctic Avenue to Palmer-Fishhook Road. Work may include improvements to the Palmer-Fishhook intersection, pedestrian accommodations, and safety features. This effort will include analysis to evaluate safety and capacity on the corridor and will reconstruct approximately 1.75 miles of the existing two-lane rural road from Arctic Ave (Old Glenn/Bogard Rd) to Palmer-Fishhook Road to address capacity and safety deficiencies. Cost: \$14 million	Safety	2024-2027	STIP (SM SOA, NHPP)
34251: Inner and Outer Springer Loop Separated Pathway [TAP Award 2023]	This project will construct a paved nonmotorized pathway adjacent to one side of Inner Spring Road and Outer Springer Road extending from the Glenn Highway to Cope Industrial Way for a length of 6,000 feet. This project was selected in the 2023 DOT&PF Transportation Alternatives Program solicitation. Cost: \$2.1 million	Sustainability	2024-2027	STIP (TAP Flex, 3PF Local)
6234: Palmer-Fishhook Separated Pathway: Trunk Road to Edgerton Parks Road [TAP Award 2023]	Construct a paved nonmotorized pathway along Palmer-Fishhook Road from Trunk Road to Edgerton Parks Road. This project was selected in the 2023 DOT&PF Transportation Alternatives Program solicitation. Cost: \$2.4 million	Sustainability	2024-2027	STIP (TAP Flex, 3PF Local, STBG Flex, TAP 50-200k MVP, SM SOA, STBG)

Notes: SM SOA = State Match; MVP = Metropolitan Planning Program; Local Match = MVP Match; NHPP = National Highway Performance Program; NHPP AC = National Highway Performance Program Advance Construction; STBG = Surface Transportation Block Grant; STBG Flex = Surface Transportation Block Grant: FLEX; STBG Flex AC = Surface Transportation Block Grant: FLEX Advance Construction; STBG 50-200 MVP = Surface Transportation Block Grant: Population 50-200K (MVP); SA = Highway Safety Improvement Program; TAP Flex = Transportation Alternatives Program: FLEX; TAP 50-200k MVP = Transportation Alternatives Program: Population 50-200K (MVP); 3PF Local = Local Match (Community-Driven Projects); Bridge-HIP = Highway Improvement Program Bridge Funds; Source: DOT&PF 2025

PROGRAMS

STIP Programs within MPO Boundary

Program Name	Description	Purpose	Time Frame	Funding Mechanism
34531: MatSu Valley Planning for Transportation (MVP) Advance Project Definition	This project will provide funding for the development of scope, schedules, and estimates (SSE) for projects nominated to the MVP for the Transportation Metropolitan Transportation Plan (MTP) and Transportation Improvement Program (TIP). SSEs are completed by DOT&PF staff at the request of MVP for Transportation at the time projects are nominated. Cost: \$200,000	State of Good Repair	2024-2027	STIP (SM SOA, STBG 50-200 MVP)
34532: MatSu Valley Planning for Transportation (MVP) Improvement Program FY25-27	Perform gravel or asphalt surface maintenance and preservation activities on roads, sidewalks, and pathways. Work may also include new or upgraded illumination, signing, striping, storm drains, and intersection improvements including nonmotorized crossings, as well as ADA upgrades to sidewalks and curb ramps. Cost: \$1 million	State of Good Repair	2024-2027	STIP (SM SOA, STBG 50-200 MVP)
34680: MatSu Valley Planning for Transportation (MVP) Pavement Management Plan	The plan would include automated collection of pavement condition (smoothness, rutting, and cracking) within the Metropolitan Planning Area (MPA) using Road Surface Profiling equipment consisting of distance measuring instruments, accelerometers and a Laser Crack Measurement System to provide high-definition 3D profiles and 2D images of the road surface. Data collected will be documented in GIS format and in a written report that will prioritize improvement projects. Cost: \$300,000	State of Good Repair	2024-2027	STIP (STBG 50-200 MVP; Local Match)
34654: MatSu Valley Planning for Transportation (MVP) Sign Management Plan	Devise and implement a system to assess all traffic signs within the Metropolitan Area Boundary on a regular basis and ensure they are maintained and replaced as needed to improve visibility and increase road safety. Use the sign assessment to track sign data and to maintain a minimum retroreflectivity level of all signs to increase their visibility at night. Cost: \$400,000	State of Good Repair	2024-2027	STIP (STBG 50-200 MVP; Local Match)

Program Name	Description	Purpose	Time Frame	Funding Mechanism
34655: MatSu Valley Planning for Transportation (MVP) Streetlight Intersection Management Plan	Conduct an inventory of all the streetlights within the Metropolitan Planning Area boundary and develop a plan for converting the lights to LED. Examine each intersection to determine any additional lighting system work as required for electrical code compliance and proper operation of the LED fixtures. Additional work may include replacement of frayed wiring, grounding of light pole bases, repair of electrical connections, troubleshooting of lighting or load center circuitry and other miscellaneous repairs. Cost: \$400,000	Safety	2024-2027	STIP (STBG 50-200 MVP; Local Match)
34404: Metropolitan Planning Organization (MPO) Planning: MVP	Urban planning funds, primarily from Federal Transit Administration (FTA) Section 5303 and Federal Highway Administration (FHWA) Metropolitan Planning funds, are sub-allocated to the MPO based on the state's distribution formula. While planning funds are not required to be included in the Statewide Transportation Improvement Program (STIP), the MatSu Valley Planning (MVP) organization has requested to use Surface Transportation Block Grant (STBG) funds, and thus, the project is included for that reason. Cost: \$1.7 million	Sustainability	2024-2027	STIP (MVP, Local Match)
34676: Non-Rail Transit Projects in the MVP Planning Boundary	This project includes funding from FTA Sections 5310, 5339, and 5307 directed to non-rail transit. Section 5339 funds provide financial assistance to states and transit agencies through a statutory formula to replace, rehabilitate, and purchase buses and related equipment, as well as to construct bus-related facilities. Section 5310 funds are allocated to enhance mobility for seniors and individuals with disabilities. Section 5307 funds provide transit operating assistance to Valley Transit, supporting the ongoing operations and maintenance of transit services. Cost: \$9.9 million	State of Good Repair	2024-2027	STIP ^a

^aFunding mechanisms include: Section 5307 Urbanized Area Formula (Mat-Su Borough Area Transit); Local Match (Community-Driven Projects); Section 5339 Bus and Bus Facilities (MVP); Section 5310 Enhanced Mobility for Older Adults & People w/ Disabilities (MVP)

Notes: SM SOA = State Match; STBG 50-200 MVP = Surface Transportation Block Grant: Population 50-200K; MVP = Metropolitan Planning Program; Local Match = MVP Match

Source: DOT&PF 2025

APPENDIX F

MVP TRAVEL DEMAND MODEL REPORT

Memo

Date: Tuesday, January 06, 2026

Project: MatSu Valley Planning for Transportation (MVP) Metropolitan Transportation Plan (MTP)

To: Patrick Cotter - RESPEC

From: Mingwei Shen, PE - HDR

Subject: **MVP MTP Quality Level of Service Analysis**

Study Area

This analysis utilizes the MVP regional travel demand model to determine the Quality Level of Service (LOS) for selected roadways. The roadway segments evaluated included those classified as “collector” or higher based on Alaska DOT functional classification within the MVP Metropolitan Planning Area.

Analysis Periods

The travel demand model, developed by RSG included an existing conditions scenario for 2019 and a future year scenario for 2050. The 2050 scenario incorporates programmed roadway improvements anticipated to be completed before that year. Model outputs provide projected daily traffic volumes as well as traffic volumes for AM peak (7AM-9AM), PM peak (3PM-6PM) and Off-peak periods. This analysis evaluated the following scenarios and time periods.

- Existing Conditions 2019 (Daily)
- Existing Conditions 2019 (PM peak hour)
- Future Year Conditions 2050 (Daily)
- Future Year Conditions 2050 (PM peak hour)

Based on the review of traffic data collected in the region¹, the PM peak hour typically occurs between 5 and 6 PM, and the peak hour conversion factor is approximately 2.75. Therefore, the PM peak hour volume is calculated by dividing the PM peak period volume by 2.75.

Quality Level of Service (LOS)

The State of Alaska does not publish Quality LOS standards. For this analysis, Florida DOT's generalized service volume tables (GSVT), which are based on Highway Capacity Manual

¹ AK DOT&PF, *Alaska Traffic Data – Public Traffic Count Map*, accessed from <https://alaskatrafficdata.drakewell.com/publicmultinodemap.asp>

(HCM)² urban street facility methodology, were used to determine the Quality LOS. FDOT's GSVTs are analysis tools for conducting high-level long-range planning analysis. Each GSVT provides generalized peak hour directional, peak hour two-way, and annual average daily traffic (AADT) maximum service volumes for a given LOS by number of lanes and land use context classification. Although the GSVTs provide the highest number of vehicles for a given LOS, the service volumes do not represent capacity. Quality of service reflects users' perception of how well a roadway functions, which is influenced by factors such as travel speed, delay, and density. The GSVT criteria are established for arterial roadways and do not specifically address collectors or local streets. In the absence of specific guidance, the arterial criteria were applied to collectors for this analysis.

Assumptions

This analysis assumes C1 and C2 classifications for the region, which is predominantly characterized by natural, preserved landscapes and sparsely settled rural areas. The AADT and peak hour generalized service volume table for C1 and C2 is shown in Table 1 and Table 2. The Quality LOS Handbook defines thresholds only for LOS B or better. Segments shown as LOS B may in fact be LOS A, but both LOS A and LOS B represent similar free-flow conditions.

Table 1: AADT Two-Way General Service Volume Table for C1 and C2 Classification

	B	C	D	E
2 Lane	4,600	8,200	14,000	28,500
4 Lane	32,000	45,800	55,700	63,900
6 Lane	48,000	68,300	83,700	95,900

Source: Florida Department of Transportation. 2023 *Multimodal Quality Level of Service Handbook*.

Table 2: Peak Hour Two-Way General Service Volume Table for C1 and C2 Classification

	B	C	D	E
2 Lane	440	780	1,330	2,710
4 Lane	3,040	4,350	5,290	6,070
6 Lane	4,560	6,490	7,950	9,110

Source: Florida Department of Transportation. 2023 *Multimodal Quality Level of Service Handbook*.

Certain roadway characteristics such as turn lanes, medians and one-way restrictions may affect the service volumes and require the analysis to apply adjustment factors to the service volumes. The following adjustment factors for C1 and C2 classification were used in the analysis.

- 2 Lane Divided Roadway with Exclusive Left Turn Adjustment: Multiply by 1.05

² Transportation Research Board (TRB), *Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis*, 2016.

- Multilane Undivided Highway with Exclusive Left Turn Adjustment: Multiply by 0.95
- Multilane Undivided Highway without Exclusive Left Turn Adjustment: Multiply by 0.75

Additional adjustment factors were applied to certain segments based on values from other context classifications to account for one-way facilities. Engineering judgement was used to interpolate service volume for three-lane roadway segments. These include the following:

- One-way Facilities: Multiply by 0.6. This applies to the proposed Main St-Talkeetna St couplet.
- Three-Lane Roadway Segments: Multiply by 1.5. Palmer-Wasila Highway between Knik Goose Bay Road and Parks Highway has 2 eastbound lanes and 1 westbound lane.

The generalized service volume tables are intended as a generalized planning tool and do not account for specific traffic control features or operational conditions. The LOS results in this study should not be used for traffic operational analysis or roadway design.

Analysis Summary

The project team developed a GIS-based tool to query the projected traffic volumes in the travel demand model and determine the quality LOS for each segment based on the generalized service volume tables and adjustment factors described above. Maps showing roadway quality LOS for daily and PM peak hour conditions are provided in the attached figures.

While most roadways are underutilized during most hours of the day, many roadway segments experience higher demand during peak hours, resulting in worse quality LOS than the typical daily conditions. Peak hour traffic is typically more directional and is influenced by traffic control. In some cases, segments with consistently high demand throughout the day may have a worse daily LOS than their peak-hour LOS, because peak-hour congestion may occur in only one direction while the overall LOS remains satisfactory. Therefore, direct comparisons between daily and peak-hour LOS are not appropriate.

Under 2019 existing conditions, most roadways in the region operate at a quality LOS D or better. Portions of Parks Highway and Glenn Highway operate at LOS E due to higher traffic demand. The 2050 scenario includes several proposed capacity improvements on the roadway network such as Seward Meridian Highway, Trunk Road, and Knik Goose Bay Road. Although much of Parks Highway remains at LOS E in 2050 due to capacity limitations, improvements on surrounding roadway network would divert traffic to alternate routes and help prevent further degradation in quality LOS. Much of the Palmer-Wasila Highway and Knik Goose Bay Road operate at LOS D in 2050, but any further increase in demand would degrade the performance. During the PM peak hour, segments of the Parks Highway near the Glenn Highway interchange operate at LOS F, driven by inbound commuter traffic entering the region.

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

December 2025

Matsu Valley Planning for Transportation (MVP)

Report Title:

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Report Prepared by:

RSG

Report Prepared for:

Matsu Valley Planning for Transportation (MVP)

For additional information regarding this report, or for questions about permissions or use of findings contained therein, please contact:

RSG (Headquarters)
55 Railroad Row, Suite 200
White River Junction, VT 05001
(802) 295-4999
www.rsginc.com

© 2025 RSG

CONTENTS

INTRODUCTION.....	v
1.0 MODEL OVERVIEW.....	1
1.1 MVP MODEL OVERVIEW	1
TRIP GENERATION	1
TRIP DISTRIBUTION	2
MODE CHOICE	2
COMMERCIAL VEHICLES	3
SPECIAL MARKETS	3
VEHICLE ASSIGNMENT	4
1.2 MODEL GEOGRAPHY	4
1.3 MODEL LIMITATIONS	9
1.4 HOW TO READ THIS REPORT	9
2.0 DATA COLLECTION & MODEL PREPARATION.....	10
2.1 MODEL LINEAGE.....	10
2.2 TRAFFIC DATA	10
2.3 SOCIOECONOMIC DATA	11
HOUSEHOLD AND POPULATION ESTIMATES AND GEOGRAPHIC ALLOCATION	12
FUTURE HOUSEHOLD AND POPULATION ESTIMATES	12
EMPLOYMENT ESTIMATES.....	16
EMPLOYMENT FORECASTS	16
SOCIOECONOMIC DATA SUMMARY AND HISTORICAL CONTEXT	17
2.4 MODEL NETWORK	19
3.0 MODEL CALIBRATION AND VALIDATION	21

3.1 MODEL CALIBRATION AND VALIDATION.....	21
MODEL TAZS	21
TRIP GENERATION	21
TRIP DISTRIBUTION	21
EXTERNAL TRIPS	21
ASSIGNMENT VALIDATION.....	21
3.2 FUTURE FORECAST PREPARATION	23
FUTURE BASELINE (NO-BUILD) NETWORK	23
BUILD ALTERNATIVE NETWORK.....	25
4.0 MODELED 2019 EXISTING CONDITIONS	26
4.1 2019 BASE-YEAR AGGREGATE FINDINGS	26
4.2 LOS AS MEASURED BY DEMAND OVER CAPACITY.....	32
4.3 PERFORMANCE SUMMARY FOR SELECTED LINKS	36
4.4 ESTIMATED ROADWAY VEHICLE VOLUMES AND DELAY	38
5.0 FORECAST FUTURE SYSTEM PERFORMANCE	41
5.1 2050 BASELINE SCENARIO (NO BUILD).....	41
5.2 2050 BASELINE AGGREGATE FINDINGS	41
5.3 2050 BASELINE LEVEL OF SERVICE BY D/C	45
5.4 2050 BASELINE ROADWAY VEHICLE VOLUME AND DELAY.....	49
5.5 2050 BASELINE PERFORMANCE SUMMARY FOR SELECTED CORRIDORS	52
5.6 2050 BASELINE CONCLUSIONS	54
5.7 2050 BUILD SCENARIOS.....	54

LIST OF FIGURES

FIGURE 1: MODELED AREA, MPA, AND MAT-SU BOROUGH BOUNDARIES	VI
FIGURE 2: MODEL DISTRICTS	5
FIGURE 3: MVP MODEL INTERNAL TAZ BOUNDARIES	6
FIGURE 4: INTERNAL TAZS WITHIN MSB ESA (IN RED).....	7
FIGURE 5: INTERNAL TAZS WITHIN MVP MPA (IN RED)	8
FIGURE 6: MAP OF TRAFFIC COUNTS IN THE MODELED MSB ESA.....	11
FIGURE 7: MSB POPULATION CONTROL DATA	12
FIGURE 8: HOUSEHOLD GROWTH ALLOCATED BY TAZ.....	14
FIGURE 9: HOUSEHOLD TOTALS IN MSB ESA AND MPA.....	15
FIGURE 10: POPULATION TOTALS IN MSB ESA AND MPA	15
FIGURE 11: MSB ESA 2019 MODELED ROAD CENTERLINE MILES BY FACILITY TYPE.....	27
FIGURE 12: MVP MPA 2019 MODELED ROAD CENTERLINE MILES BY FACILITY TYPE.....	28
FIGURE 13: MODELED 2019 ROADS BY FACILITY TYPE.....	29
FIGURE 14: MSB ESA ESTIMATED 2019 VHT BY FACILITY TYPE	30
FIGURE 15: MSB ESA ESTIMATED 2019 VHD BY FACILITY TYPE	30
FIGURE 16: MVP MPA ESTIMATED 2019 VHT BY FACILITY TYPE	31
FIGURE 17: MVP MPA ESTIMATED 2019 VHD BY FACILITY TYPE	32
FIGURE 18: MSB ESA 2019 CENTERLINE MILES BY LEVEL OF SERVICE	34
FIGURE 19: MVP MPA 2019 CENTERLINE MILES BY LEVEL OF SERVICE.....	34
FIGURE 20: 2019 BASE PEAK LOS ALONG PARKS HWY NEAR WASILLA	35
FIGURE 21: 2019 PEAK LOS ALONG PARKS HWY WEST OF WASILLA.....	35
FIGURE 22: 2019 BASE PEAK LOS NEAR PALMER	36
FIGURE 23: MAP OF SEGMENTS SELECTED FOR CORRIDOR REPORTING	37
FIGURE 24: 2019 MODELED DEMAND IN MSB ESA	39
FIGURE 25: 2019 PM PERIOD (3-6 PM) VEHICLE HOURS OF DELAY	40
FIGURE 26: MSB ESA 2050 NOBUILD FORECAST DAILY VHD COMPARED TO 2019 BASE-YEAR ESTIMATES	43

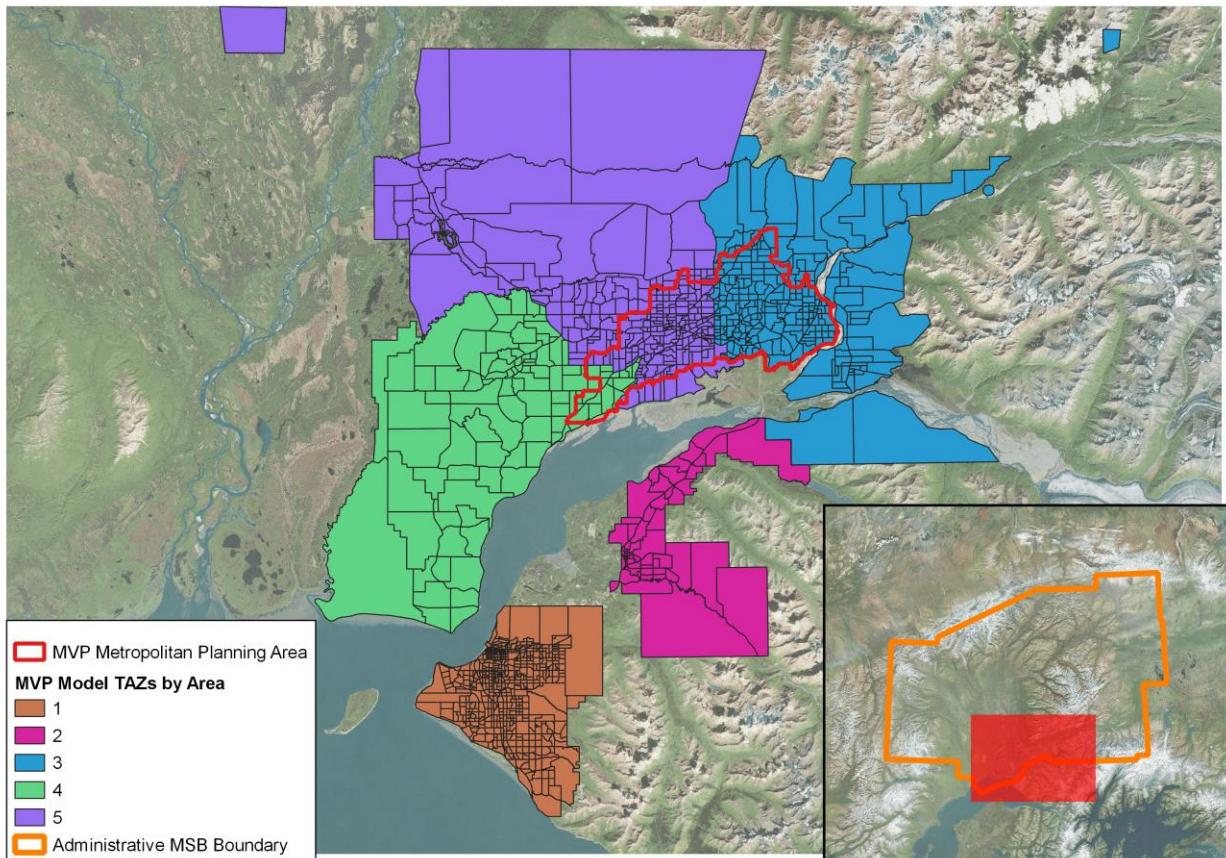
FIGURE 27: MVP MPA 2050 NOBUILD FORECAST DAILY VHD COMPARED TO 2019 BASE-YEAR ESTIMATES	43
FIGURE 28: MSB ESA 2050 NO BUILD FORECAST DAILY VHD SHARE OF VHT COMPARED TO 2019 BASE YEAR ESTIMATES	44
FIGURE 29: MVP MPA 2050 NO BUILD FORECAST DAILY VHD PERCENT SHARE OF VHT COMPARED TO 2019 BASE YEAR ESTIMATES	44
FIGURE 30: MSB ESA 2050 NOBUILD FORECAST CENTERLINE MILES DIFFERENCE FROM 2019 BY LOS CATEGORY	46
FIGURE 31: MVP MPA 2050 NOBUILD FORECAST CENTERLINE MILES DIFFERENCE FROM 2019 BY LOS CATEGORY	46
FIGURE 32: 2050 BASELINE PEAK LOS NEAR WASILLA	47
FIGURE 33: 2050 BASELINE PEAK LOS ALONG PARKS HWY WEST OF WASILLA.....	48
FIGURE 34: 2050 BASELINE PEAK LOS NEAR PALMER	49
FIGURE 35: 2050 BASELINE DAILY MODELED DEMAND	50
FIGURE 36: 2050 BASELINE PM (3-6 PM) PERIOD VEHICLE HOURS OF DELAY	51

LIST OF TABLES

TABLE 1: EMPLOYMENT CATEGORIES AND GROWTH RATES BY 2-DIGIT NAICS CODE.....	16
TABLE 2: TAZ INPUT SOCIOECONOMIC DATA SUMMARY (REGION, MSB ESA, AND MVP MPA)	17
TABLE 3: 2019 BASE NETWORK UPDATES (COMPLETED PROJECTS)	19
TABLE 4: MSB ESA VALIDATION STATISTICS BY VOLUME	22
TABLE 5: MVP MPA VALIDATION STATISTICS BY VOLUME.....	23
TABLE 6: COMMITTED PROJECTS TO BE CONSTRUCTED BY 2050	23
TABLE 7: MSB ESA (DISTRICT 3,4,5) 2019 ESTIMATED DAILY VMT, VHT, AND VHD BY FACILITY TYPE.....	26
TABLE 8: MVP MPA 2019 ESTIMATED DAILY VMT, VHT, AND VHD BY FACILITY TYPE.....	27
TABLE 9: 2019 MSB ESA DAILY VMT, VHT, AND VHD BY LOS	33
TABLE 10: 2019 MVP MPA DAILY VMT, VHT, AND VHD BY LOS.....	33
TABLE 11: DAILY VMT, VHT, AND VHD ON SELECTED CORRIDORS.....	37
TABLE 12: MSB ESA 2050 NO BUILD FORECAST AND 2019 BASE YEAR ESTIMATES DAILY VMT, VHT, AND VHD COMPARISON.....	41
TABLE 13: MVP MPA 2050 NOBUILD FORECAST AND 2019 BASE-YEAR ESTIMATES DAILY VMT, VHT, AND VHD COMPARISON.....	42
TABLE 14: MSB ESA 2050 NO BUILD FORECAST ROAD CENTERLINE MILES BY LOS CATEGORY COMPARED TO 2019 BASE YEAR ESTIMATES.....	45
TABLE 15: MVP MPA 2050 NOBUILD FORECAST ROAD CENTERLINE MILES BY LOS CATEGORY COMPARED TO 2019 BASE-YEAR ESTIMATES.....	45
TABLE 16: 2050 BASELINE FORECAST AND 2019 BASE VMT, VHT, VHD BY SEGMENT	52

LIST OF ABBREVIATIONS

AADT	Annual Average Daily Traffic
AMATS	Anchorage Metropolitan Area Transportation Solutions
CAGR	Compound Annual Growth Rate
DOT&PF	Alaska Department of Transportation and Public Facilities
DOLWD	Alaska Department of Labor and Workforce Development
ESA	Expanded Sensitivity Area
FSUTMS	Florida State Urban Transportation Model System
IPF	Iterative Proportional Fitting
LOS	Level of Service
MSB	Matanuska-Susitna Borough
MPA	Metropolitan Planning Area
MPO	Metropolitan Planning Organization
MVP	MatSu Valley Planning for Transportation
NAICS	North American Industry Classification System
RMSE	Root Mean Squared Error
TAZ	Transportation Analysis Zone
VHD	Vehicle Hours of Delay
VHT	Vehicle Hours Traveled
VMT	Vehicle Miles Traveled


INTRODUCTION

This report provides a high level overview of the Matsu Valley Planning for Transportation (MVP) MPO Travel Demand Model, including its features, underlying geography, and assumptions for 2019 and 2050 socioeconomic inputs. This is a traditional 4-step model with enhancements and sensitivity to both the MVP Metropolitan Planning Area (MPA) and interactions between the Mat-Su Borough Expanded Sensitivity Area (ESA)¹ and Anchorage. The modeled area is compared to both the MVP Metropolitan Planning Area (MPA) and the full Mat-Su Borough boundaries in Figure 1. The model was re-calibrated by RSG to perform well in the overall MSB ESA and MVP Metropolitan Planning Area (MPA) to 2019 traffic counts obtained for the MSB ESA. RSG obtained 2050 population and employment forecasts and allocated future growth to model transportation analysis zones to prepare model inputs for the 2050 horizon year. RSG also obtained lists of completed, under construction, and planned road projects to prepare a 2050 model network. This report describes the results of the 2019 base year model run for the MSB ESA and MVP MPA in aggregate and for segments and at the link level in maps of model outputs such as the model assigned demand and level of service as measured by demand over capacity. The report also describes the results of the 2050 baseline model run and provides some comparisons between the 2019 and 2050 system performance.

¹ The ESA consists of an area within the Mat-Su Borough (MSB) administrative boundary that is outside of the MVP MPA but does not constitute the entirety of the MSB area and does not include the Anchorage Bowl or Eagle River areas.

FIGURE 1: MODELED AREA, MPA, AND MAT-SU BOROUGH BOUNDARIES

1.0 MODEL OVERVIEW

1.1 MVP MODEL OVERVIEW

The MVP Travel Demand Model is an advanced 4-step aggregate travel model based on the Anchorage Metropolitan Area Transportation Solutions (AMATS) Travel Demand Model² developed in TransCAD software version 6 for a 2013 base year. The AMATS model was previously enhanced under the Interregional Corridor Study (IRCS) to updated to a 2019 base-year and provide a higher level of detail and thus higher sensitivity in the growing MPA and immediate surrounding areas by splitting model transportation analysis zones (TAZs) into a larger number of smaller zones and adding detail to the road network.³ This effort increased the number of MSB ESA zones in the model from 249 to 647 and reduced the average coverage area from 5 to 2 square miles per zone, with smaller zones in areas with higher population density. The model is calibrated to 2019 traffic counts collected within the modeled area. The enhanced and updated model used in this effort is referred to as the MVP Model.

The 4-step model paradigm is described below for the passenger models.

Trip generation

The model generates trip ends in each TAZ using trip rates developed for several purposes:

- **Home-based Work (HBW)** – trips between home and work
- **Home-based College/University (HBU)** - trips between home and college/university/trade school
- **Home-based School (HBC)** - trips between home and school (pre-school through grade 12)
- **Home-based Shopping (HBS)** - trips between home and shopping
- **Home-based Other (HBO)** - trips between home and any other type of destination
- **Non-Home-Based Work (NHW)** - trips between work and other places besides home
- **Non-Home-Based Other (NHO)** - trips between locations that are neither work nor home

² RSG with R&M Consultants, Solstice Advertising, and Jon Spring. AMATS Travel Demand Model Update: Travel Model Development Report. 11 May 2016.

https://www.muni.org/Departments/OCPD/Planning/AMATS/MTP/2040/Amats_travel_demand_model_devel_report_final_2016_06_03.pdf.

³ Kinney Engineering. Mat-Su Intra-Regional Corridor Study: Travel Demand Model 2019 Update Technical Memorandum. April 2022.

Trip rates are applied using cross-classification tables so that trip generation varies by household size, income, and number of children, depending on the trip purpose. Non-Home-based trips are computed based on the non-home ends of other modeled trips, which ensures a logical connection between trips made away from home, such as between work and a restaurant or shopping center.

Trip distribution

Trip Distribution models estimate the likelihood of choosing a destination zone j from an origin zone i based on the travel time between zones and the relative attractiveness of all destination zones. The result of these models is an origin-destination matrix. The MVP model inherits the destination choice model design from the AMATS model, which considers accessibility and variety of modal options beyond automobile travel time. The general outcome is that potential destination TAZs with more modal options and closer to the trip origin will be more attractive, other things (e.g. attractions such as the number of jobs at the possible destinations) being equal.

Mode choice

The mode choice step predicts the mode for each trip based upon trip purpose, traveler characteristics, travel times and costs by mode, and land-use characteristics of the destination. The mode choice sub-model considers the following modes:

- Drive-alone
- Carpool transporting 2 persons (“Shared 2”)
- Carpool transporting 3 or more persons (“Shared 3+”)
- Walk
- Bike
- Walk-Transit (Walk access transit)
- PNR-Transit (Park and Ride access transit)
- KNR-Transit (Kiss and Ride or drop-off access transit)
- School bus (Home-Based School trips only)

The mode choice step produces probabilities of selecting each mode for each origin-destination zone pair and applies those probabilities to create matrices of trips by mode from origin to destination TAZ. While the model includes fixed-route transit services available in the Anchorage Bowl, trips within the MSB ESA are not served by transit in the model.

Commercial Vehicles

The MVP model system includes a commercial vehicle model that represents both light trucks and non-goods movement commercial vehicles, as well as heavy trucks. The commercial vehicle model for AMATS consists of two models designated by commercial vehicle trip type: the long-haul model component derived from the American Transportation Research Institute (ATRI) trip matrix and the short haul model component derived from the commercial vehicle research done by FHWA. The short-haul commercial vehicle model for MVP was developed keeping in mind the recommendations from the Quick Response Freight Manual (QRFM) II⁴. As noted in the manual, long-haul commodity flow data (such as ATRI) misses many commercial vehicle trips and some short-haul goods movement trips. The freight model includes a short-haul commercial vehicle model to better account for these missing light and medium truck trips.

The primary source for definition, model structure and parameters of the short-haul commercial vehicle model comes from FHWA report, “Accounting for Commercial Vehicles in Urban Transportation Models”⁵. The model defines commercial vehicles as a range of vehicle types that are used for commercial, rental, educational or government services. Commercial vehicles are grouped into three main categories based on what is being carried and the economic, demographic and land use factors influencing the magnitude and distribution of the commercial vehicle trips. These categories are:

- **Commercial Passenger (Moving People) Vehicles** - includes school buses, shuttle services, rental cars, taxis and paratransit vehicles.
- **Freight (Goods) Vehicles** - includes mail delivery, trash collection, warehouse delivery, parcel pickup and delivery, and construction vehicles.
- **Services Vehicles** - includes household/building services such as plumbers and cleaning services as well as public safety, utility maintenance and retail support functions.

The short-haul commercial vehicle model assumes that the commercial vehicles described here do not include trips from outside the model region based on the understanding that the long-haul freight model captures the inter-regional movements.

Special markets

A simple airport ground access model was developed to represent auto travel to and from Ted Stevens Anchorage International Airport. And a visitor model was developed to represent auto

⁴ Federal Highway Administration (FHWA). Quick Response Freight Manual II. Publication No. FHWA-HOP-08-010, September 2007.

⁵ Chatterjee, A., & Cohen, H. Accounting for Commercial Vehicles in Urban Transportation Models: Task 4 – Methods, Parameters, and Data Sources. Cambridge Systematics, Inc., prepared for the Federal Highway Administration, February 2004.

travel to and from hotels made by overnight visitors to Anchorage and the Matsu Regions. Additionally, a simple military model represents travel into and from Joint Base Elmendorf–Richardson.

Vehicle Assignment

Motor vehicle trips are assigned to the road network based on link travel times and calculated intersection control delay. The model runs many iterations of traffic assignment until the difference between iterations is small enough to be considered to have converged on a solution. The entire 4-step model is also run through multiple iterations such that the congested link travel times are used in trip distribution, allowing for more realistic route choice and improved model validation.

1.2 MODEL GEOGRAPHY

The model covers 5 districts shown in Figure 2 including the Municipality of Anchorage (1), Eagle River (2), and the Mat-Su Borough ESA (3,4,5).

FIGURE 2: MODEL DISTRICTS

The model internal TAZs are shown in Figure 3 and in Figure 4 with the MSB ESA highlighted in red. Figure 5 shows the model TAZs in the MVP MPA highlighted in red.

FIGURE 3: MVP MODEL INTERNAL TAZ BOUNDARIES

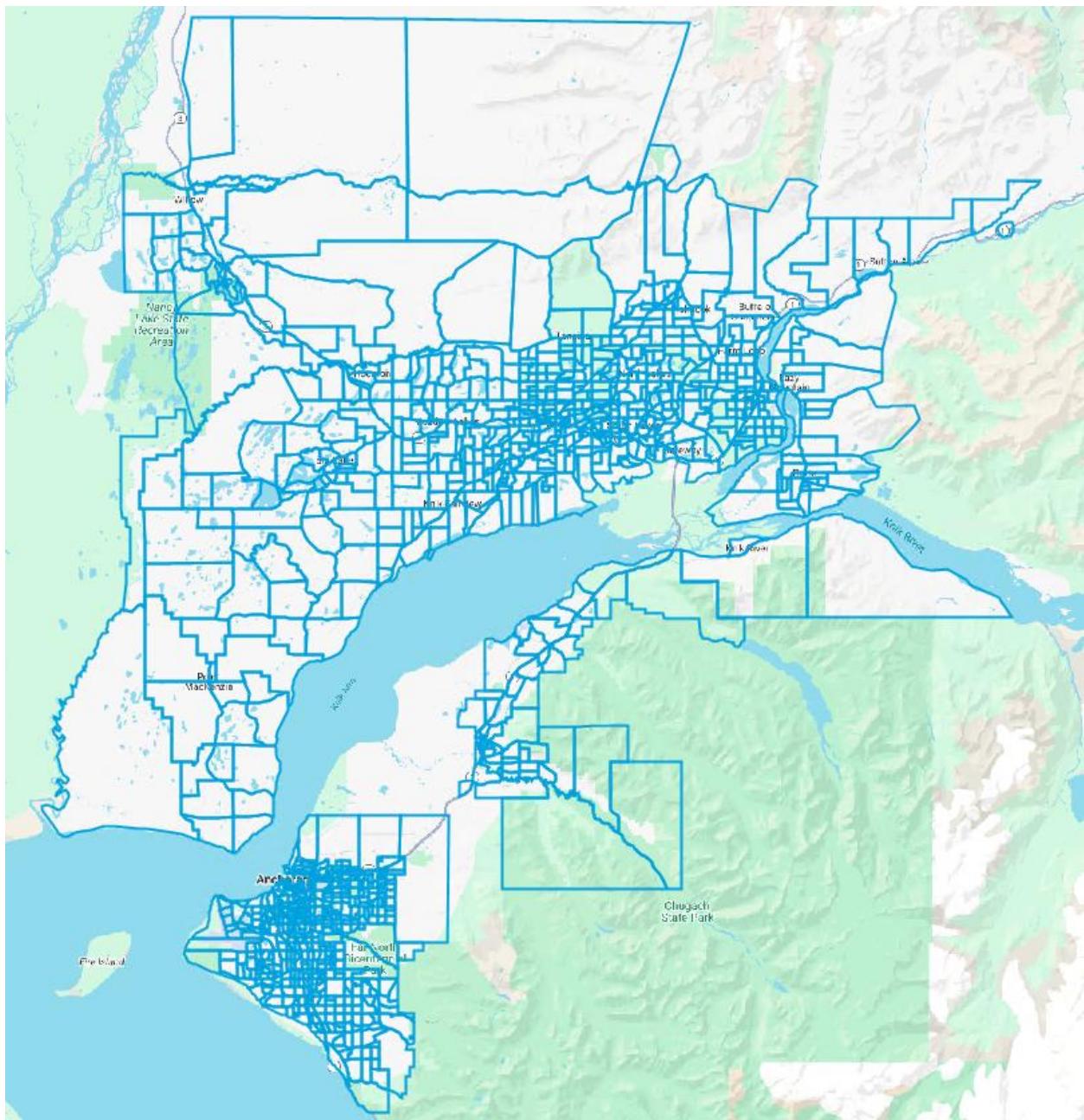


FIGURE 4: INTERNAL TAZS WITHIN MSB ESA (IN RED)

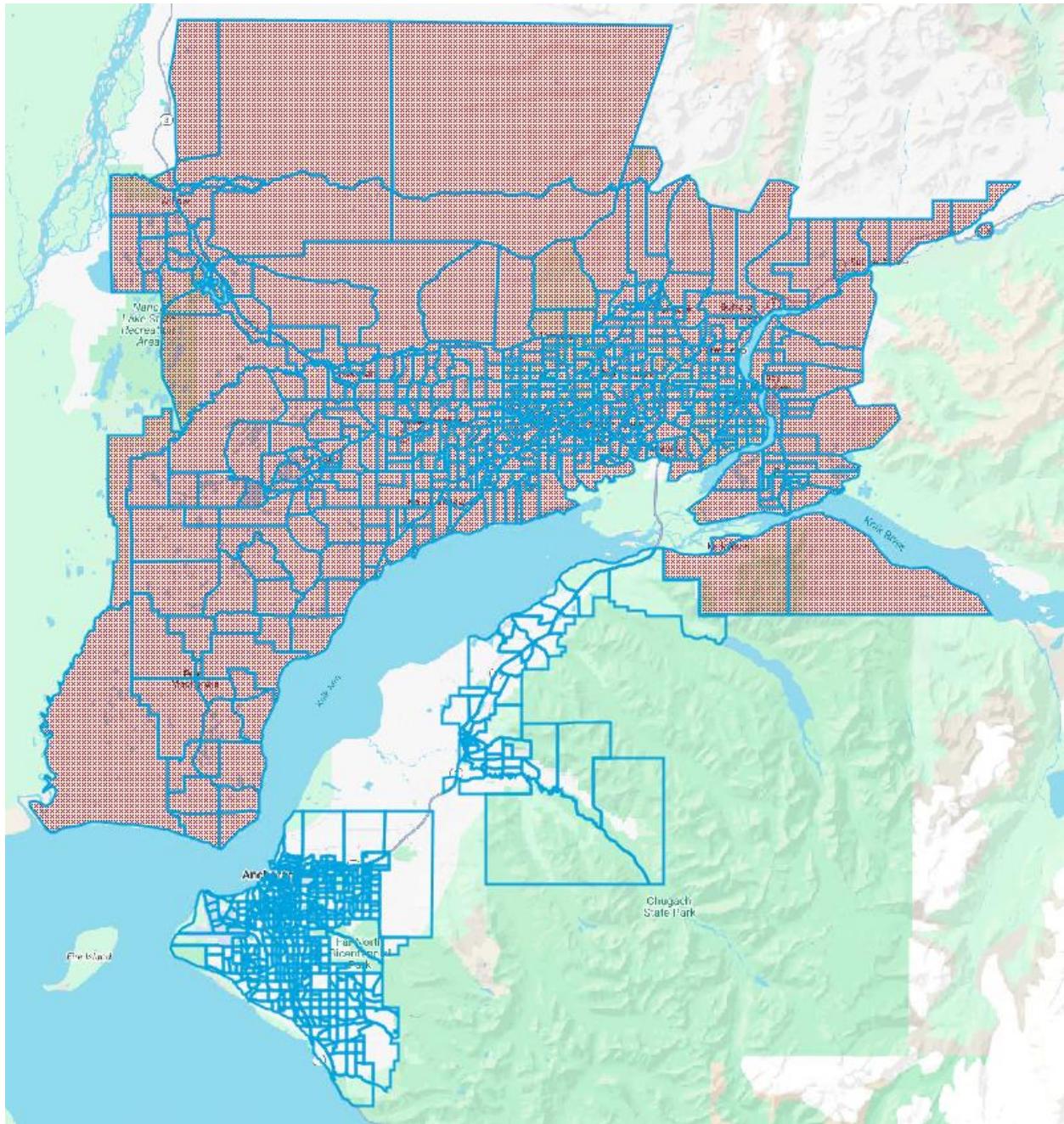
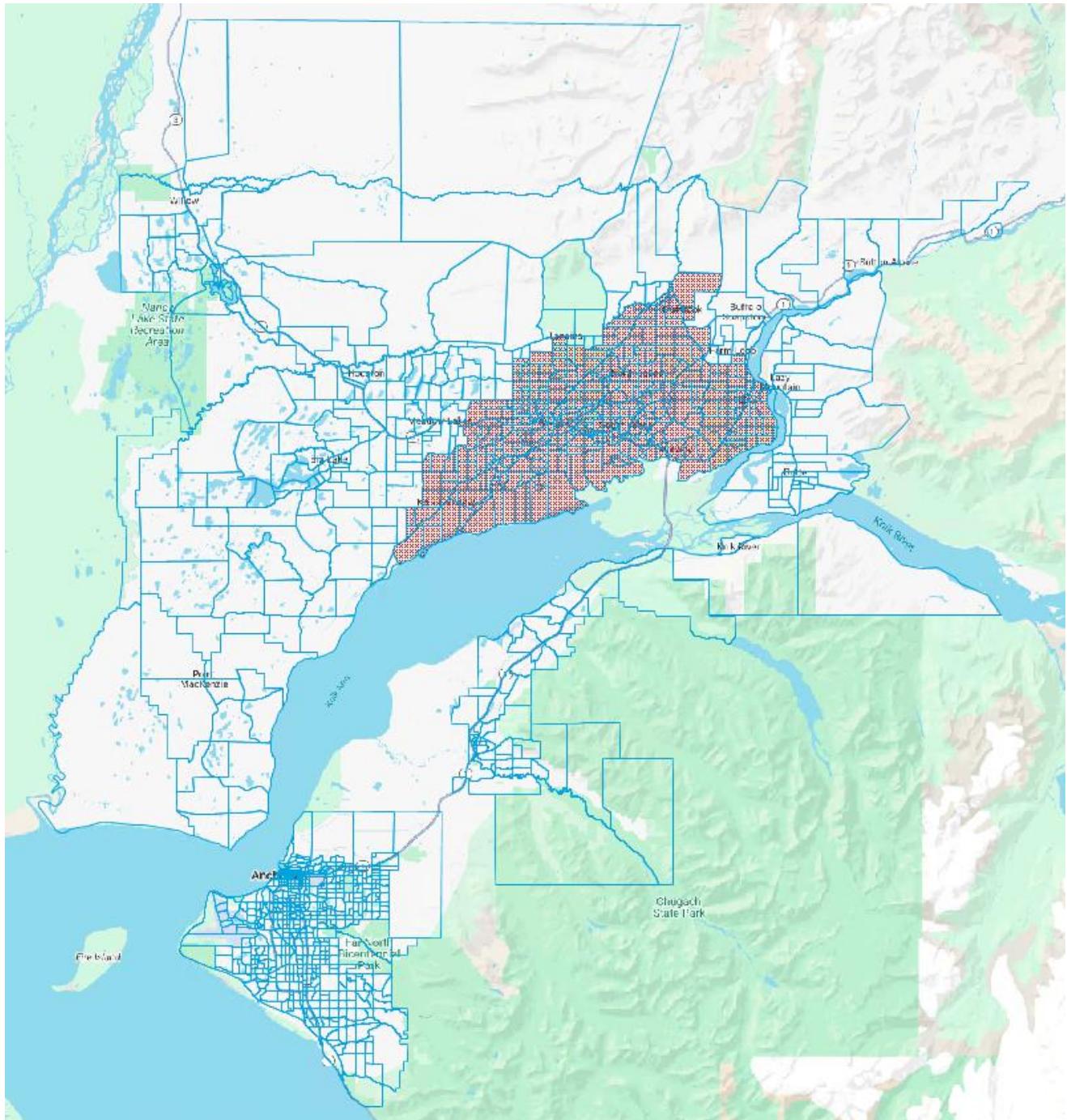



FIGURE 5: INTERNAL TAZS WITHIN MVP MPA (IN RED)

1.3 MODEL LIMITATIONS

The MVP model is validated to and intended for regional-scale traffic forecasts. The traffic assignment model uses aggregate, static methods meaning that it assigns all flows simultaneously within each time period. Link-level delay is based on volume-delay functions which add increasing delay as each link approaches and exceeds capacity. The model thus does not explicitly represent vehicle queuing and spillbacks. While the model was carefully validated as described below in section 3.0, caution should be used in interpreting any individual link (road segment) or node (intersection) data since the MVP travel forecast model is a regional demand model without fine network detail, unlike a microsimulation model. Individual data points should be thought of as a probable estimate within a range of uncertainty.

1.4 HOW TO READ THIS REPORT

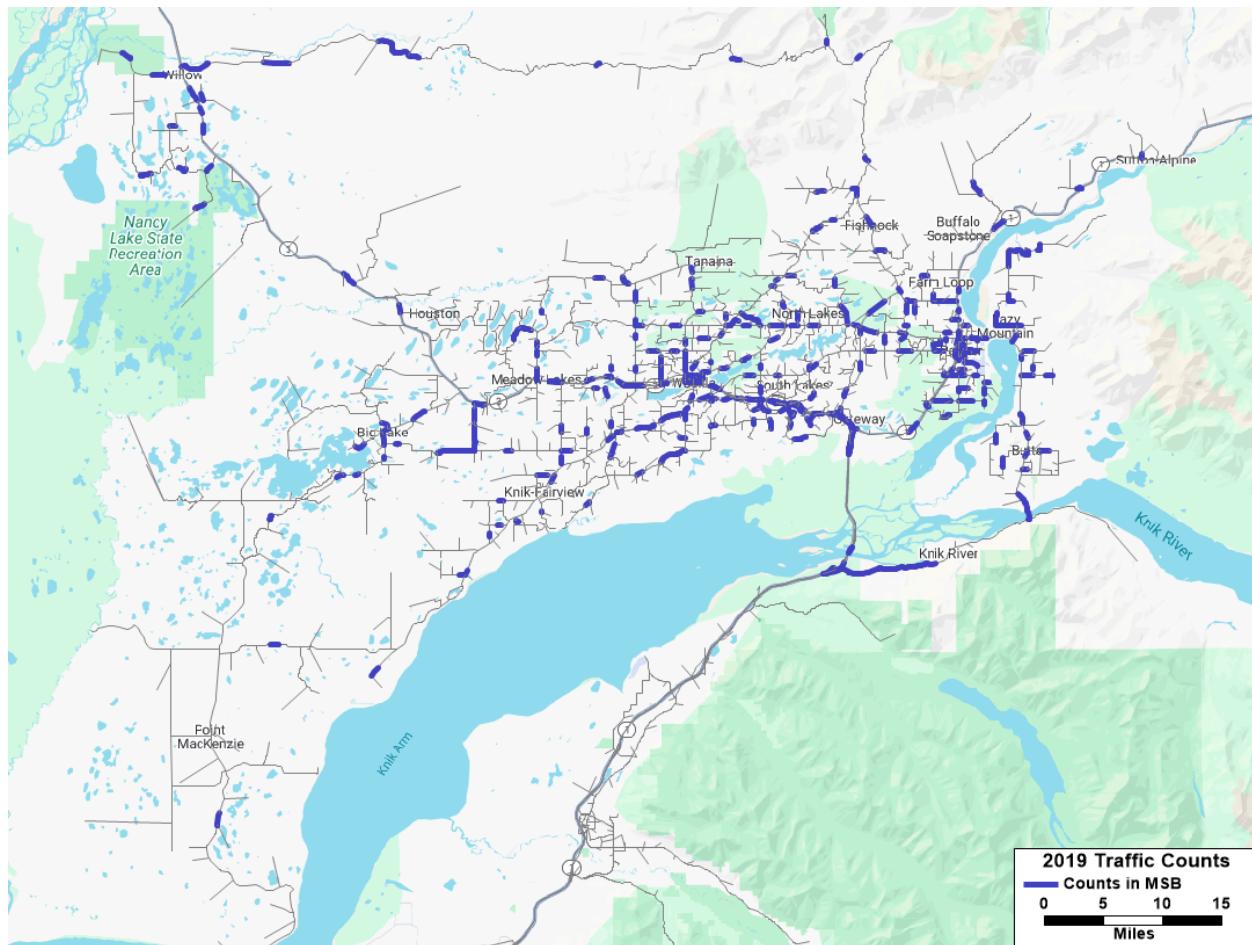
This report summarizes the 2019 base year and 2050 future year travel demand model outputs for use in system deficiency analysis. Section 1.0 above provides a high level overview of the MVP Travel Demand Model. Section 2.0 describes the data used to update the model, including traffic counts, base year household, population, and employment data, and 2050 household, population, and employment projections. Section 3.0 describes the changes RSG made to calibrate the model in the MSB area to within acceptable limits and the preparation of the 2050 no-build (baseline) network. Section 4.0 describes the 2019 existing conditions and Section 5.0 describes the 2050 baseline model results.

2.0 DATA COLLECTION & MODEL PREPARATION

2.1 MODEL LINEAGE

The basis for the MVP travel demand model is ported directly from the AMATS travel demand model developed in 2013 by RSG. The model was selected for use for the Interregional Corridor Study (IRCS) conducted by the Alaska DOT&PF under a different consultant team. The model was selected for the IRCS because the AMATS travel model contains sensitivity into the regional that makes up the MVP MPA, and immediate area surrounding the MPA. The IRCS project updated the base year, expanded network detailed, and expanded the number of TAZs in the immediate area of the MPA. This model was selected for use for the metropolitan transportation plan effort because it is the only travel demand model with geographic sensitivity to the MPA and given the time and budgetary constraints of the project is the most reasonable path forward than conducting a full model design and development process which should precede MTP efforts by 18 to 24 months.

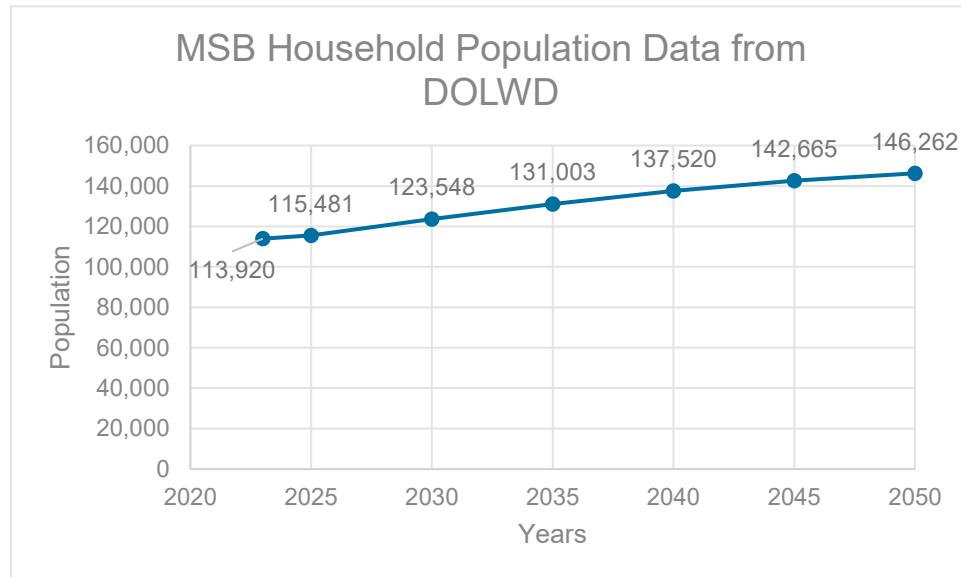
2.2 TRAFFIC DATA


Traffic counts were obtained from the AMATS 2020 model update⁶ and 2019 AADTs previously obtained under the Interregional Corridor Study (IRCS)⁷. The IRCS update previously performed an off-model validation process using these 2019 AADTs. RSG added these counts into the model link database and used existing Time of Day and Directional count fields to adjust the counts by direction and time period to the AADT totals. This allows for existing model reporting features to be used in comparing the model assignment to 2019 traffic counts. Additional count data was obtained from the Alaska Department of Transportation and Public Facilities (DOT&PF) Traffic Data⁸ website for external stations and other count stations as needed for calibration and validation. Figure 6 shows the traffic count locations used for model validation, covering the MSB ESA with a high density of counts in the Wasilla and Palmer areas and along major highways.

⁶ RSG with R&M Consultants. AMATS Travel Demand Model Update: Travel Model Development Report. March 2023.

⁷ Kinney Engineering. Mat-Su Intra-Regional Corridor Study: Travel Demand Model 2019 Update Technical Memorandum. April 2022.

⁸ <https://dot.alaska.gov/dmio/tarp/traffic.shtml>


FIGURE 6: MAP OF TRAFFIC COUNTS IN THE MODELED MSB ESA

2.3 SOCIOECONOMIC DATA

The 2019 socioeconomic data was updated under the Interregional Corridor Study (IRCS) project, and not under the MVP Metropolitan Transportation Plan (MTP). The metropolitan transportation plan carried forward the base-year socioeconomic assumptions from the IRCS. A summary from the IRCS technical documentation is provided for reference below. Updating the travel model to 2019 required updating socio-economic input data ("SE data") including households, population, and employment for 2019 to correspond with the updated traffic counts. This process required reviewing and adjusting data from Alaska Department of Labor and

Workforce Development (DOLWD) official projections⁹. The DOLWD data was clipped and forecasted to coincide with the model geography. The household population control totals across the base and future forecast year are shown in Figure 7.

FIGURE 7: MSB POPULATION CONTROL DATA

Household and population estimates and geographic allocation

The IRCS project previously expanded the number of TAZs in the MSB ESA. Splitting large zones into smaller pieces allows for greater specificity of trip origins and destinations and more accurate trip lengths and travel times. As part of the IRCS project, 2019 MSB ESA population was estimated and allocated population to zones based on existing population density in the U.S. Census Bureau 2015-2019 American Community Survey at the census block level.¹⁰

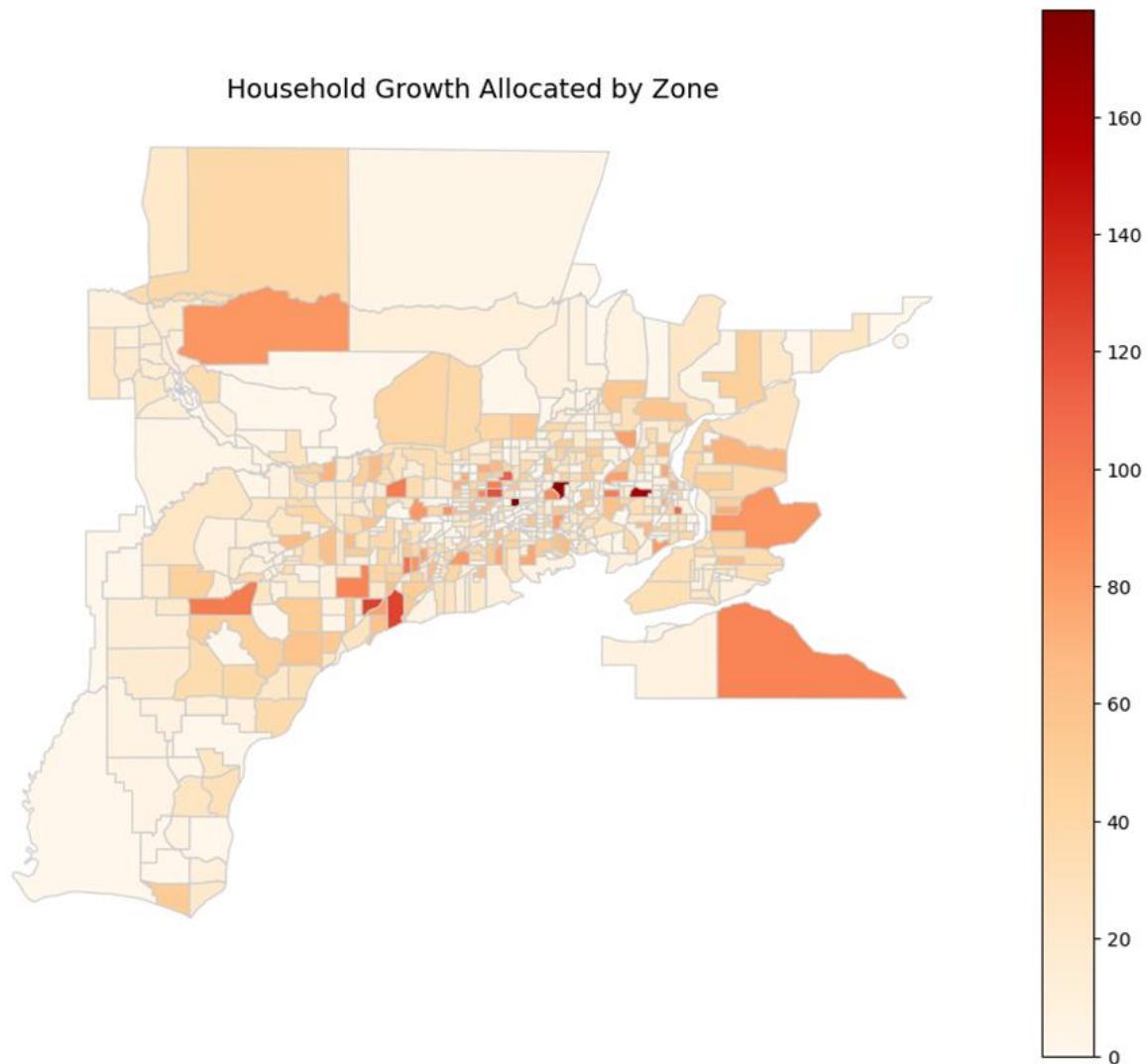
Future household and population estimates

The households and population control estimates were sourced from Alaska Population Projections 2023 to 2050 for Boroughs and Census Areas (Alaska DOLWD, 2024). The data contained a subset for MSB which included population projections for 2023 and for subsequent five-year intervals through 2050. The 2050 total population for the MSB from this dataset was utilized and clipped to the MSB ESA area as the 2050 population control total for the household

⁹ <https://live.laborstats.alaska.gov/article/projections>

¹⁰ Kinney Engineering, *Travel Demand Model 2019 Update Technical Memorandum*, April 2022

allocation process. The total number of households to be allocated took the 2050 population total and divided it by the average household size for 2019 in the current SE data, 2.56.


To estimate the number of households, parcel data from MSB was used. Before allocating the households, policy constraints information that directs or prohibits growth in the future were applied. Alaska DOT&PF supplied constraint data from a process they performed that identified the presence of various policies affecting parcels in the study area. These constraints included natural and built environment policies (floodplains, elevation and water), development constraints (ROW, SPUDS, agricultural restrictions, etc.), and finally ownership (built vs. permitted capacity) constraints. Zoning regulation constraints from Palmer, Wasilla and Houston were also applied to the parcel data. More information regarding these constraints can be found in the 2050 Socio-Demographic Projects for Travel Model Memo.¹¹

Approximately 15% of the total control households were allocated to “large lot, greenfield” parcels, see 2050 Socio-Demographic Projections for Travel Model memo for more information. These parcels were tagged with an underlying TAZ ID and aggregated at the TAZ level to estimate the total number of new residential buildings built within each TAZ. The other 85% of the households from the control data were then allocated through an iterative process for each TAZ based on the density of the TAZ. The household growth from base year 2019 to horizon year 2050 can be seen in Figure 8.

¹¹ RSG Inc. 2050 Socio-Demographic Projections for Travel Model. Memorandum to MVP. Oct. 23, 2025.

FIGURE 8: HOUSEHOLD GROWTH ALLOCATED BY TAZ

Household population for each TAZ was estimated by multiplying the average household size for each TAZ to the new total number of households for each TAZ. In summary, households were added to the 2019 household data based on greenfield constraints and density constraints for parcels. The household and household population totals across the base-year and horizon year for the model area, the MSB ESA, and the MVP MPA can be seen in Figure 9 and Figure 10

FIGURE 9: HOUSEHOLD TOTALS IN MSB ESA AND MPA

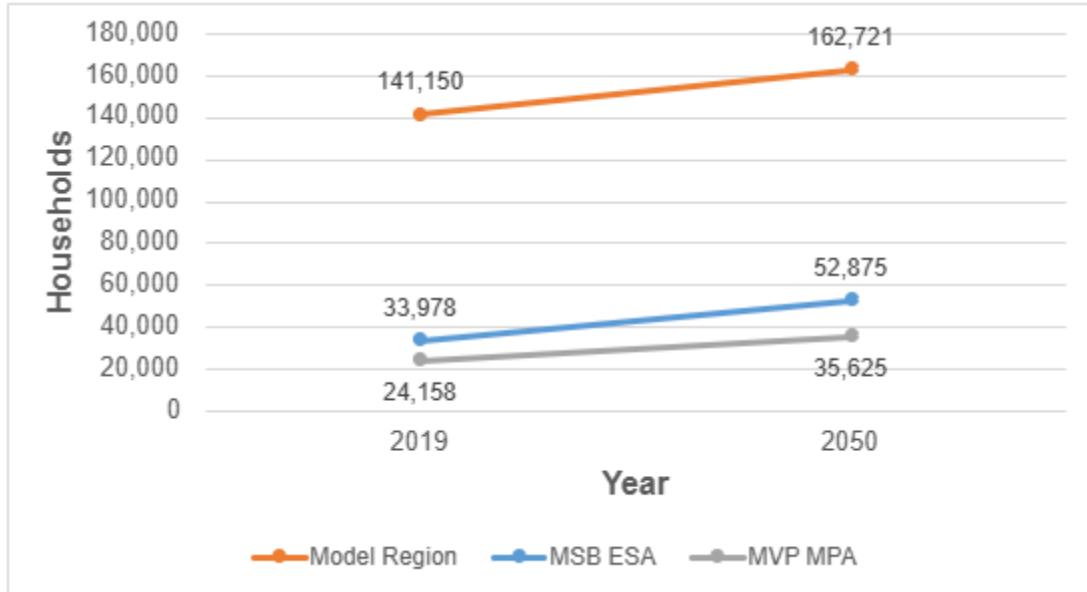
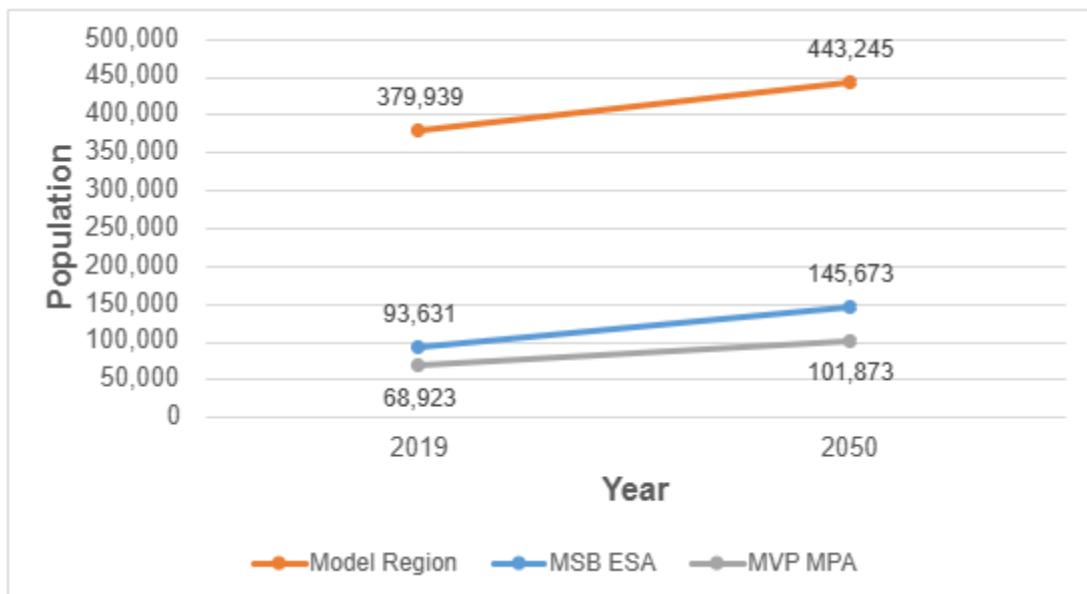



FIGURE 10: POPULATION TOTALS IN MSB ESA AND MPA

Employment estimates

Employment estimates for the 2019 base year were previously developed by McKinley Research Group and allocated to TAZs by Kinney Engineering using employment data from Alaska DOLWD 2019 Quarterly Census of Employment and Wages¹², aggregated to 2-digit NAICS codes as part of the Interregional Corridor Study (IRCS).

Employment forecasts

To forecast future employment, RSG used DOWLD statewide employment data from Alaska occupational forecast¹³. Analysis done prior to the allocation procedure computed an annual growth rate for employment by the ten industry categories based on the DOLWD statewide employment data points of 2019 and 2032, and extrapolated to 2050. Table 1 below shows the ten industry categories used by the travel model and the computed growth rates.

TABLE 1: EMPLOYMENT CATEGORIES AND GROWTH RATES BY 2-DIGIT NAICS CODE

Category	Description	Derived Growth Rate (Avg Annual)
Cat 1	Natural Resources Employment (NAICS 11 & 21)	0.32%
Cat 2	Wholesale Trade, Manufacturing and Utilities Employment (NAICS 22, 31, 32, 33, 42)	0.41%
Cat 3	Construction Employment (NAICS 23)	0.59%
Cat 4	Retail Trade Employment (NAICS 44 & 45)	0.06%
Cat 5	Transportation & Warehousing Employment (NAICS 48 & 49)	0.76%
Cat 6	Fire, Professional Services and Other Employment (NAICS 51-56 & 81)	0.05%
Cat 7	Educational Services Employment (NAICS 61)	-0.14%

¹² <https://live.laborstats.alaska.gov/article/current-quarterly-census-employment-and-wages-qcew>

¹³ <https://live.laborstats.alaska.gov/occfpst/occupations>

Cat 8	Health Care & Social Assistance Employment (NAICS 62)	0.80%
Cat 9	Accommodation, Food Services, & Entertainment Employment (NAICS 71 & 72)	0.15%
Cat 10	Government Employment (NAICS 92)	0.15%

To produce 2050 employment, the allocation procedure applies the growth factors. The time span for the allocation is n_{years} , is the difference between the horizon year and the base year (2050 - 2019). For each category i , we take the category-specific average annual change rate r_i from the control table and apply compound annual growth to every TAZ's base employment in that category. Total 2050 total employment is the sum of grown employment for all ten categories. Equation 1 shows the formula used for each category.

EQUATION 1: EMPLOYMENT ALLOCATION FORMULA

$$E_{2050}^i = E_{2019}^i \times (1 + r_i)^{n_{years}}$$

Socioeconomic data summary and historical context

The socioeconomic data estimates explained above for the MSB ESA for 2050 was combined with the 2045 data for the Anchorage and Eagle River areas to be used as the 2050 socioeconomic data input for the whole model region for the 2050 model runs. The MSB ESA of the model is projected to have a total population of 145,673 in 2050, a 56% increase for the area compared to 2019. This relates to a total of 52,875 households in that year. Employment in the MSB ESA is projected to grow 11% from 2019 to a total of 25,751 jobs. However, employment for the full model region including the Anchorage Bowl is projected to increase 61% to a total of 261,763 jobs. The MVP MPA is a smaller region than the MSB ESA but sees similar growth rates.

TABLE 2: TAZ INPUT SOCIOECONOMIC DATA SUMMARY (REGION, MSB ESA, AND MVP MPA)

MODEL REGION	2019	2050	2019-2050
Total Population	379,939	443,245	17%
Group Quarter (GQ) Population	5,434	3,777	-31%
HH Population	374,505	439,468	17%
Total Households	141,150	162,721	15%
Avg HH Size-Region	2.65	2.70	2%

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Avg Income (in 2019 Dollars)	73,683	73,683	0%
School Enrollment	66,463	61,407	-8%
College Enrollment	20,823	20,066	-4%
Cat 1 Employment	3,492	6,202	78%
Cat 2	6,773	12,331	82%
Cat 3	12,099	20,050	66%
Cat 4	20,038	24,648	23%
Cat 5	9,804	19,715	101%
Cat 6	46,761	78,550	68%
Cat 7	2,254	8,718	287%
Cat 8	22,646	44,514	97%
Cat 9	17,043	34,496	102%
Cat 10	21,620	12,538	-42%
Total Employment	162,530	261,763	61%
Preschool Enrollment	4,897	4,957	1%
Deplanements	6,000	6,000	0%
MSB ESA	2019	2050	2019-2050
Total Population	93,631	145,673	56%
GQ Population	0	0	
HH Population	93,631	145,673	56%
Total Households	33,978	52,875	56%
Avg HH Size	2.76	2.76	0%
Avg Income (in 2019 Dollars)	72,344	72,344	0%
School Enrollment	18,730	27,039	44%
College Enrollment	1,742	1,742	0%
Cat 1 Employment	222	244	10%
Cat 2	836	937	12%
Cat 3	2,721	3,288	21%
Cat 4	3,632	3,687	2%
Cat 5	670	851	27%
Cat 6	3,844	3,879	1%
Cat 7	294	283	-4%
Cat 8	4,491	5,748	28%
Cat 9	2,925	3,052	4%
Cat 10	3,609	3,782	5%
Total Employment	23,244	25,751	11%
Preschool Enrollment	2,013	2,013	0%
Deplanements	0	0	
MVP MPA	2019	2050	2019-2050

Total Population	68,923	101,873	48%
GQ Population	0	0	
HH Population	68,923	101,873	48%
Total Households	24,158	35,625	47%
Avg HH Size-Region	2.85	2.86	0%
Avg Income (in 2019 Dollars)	74,822	74822.14	0%
School Enrollment	15,352	22,062	44%
College Enrollment	1,742	1,742	0%
Cat 1 Employment	118	130	10%
Cat 2	714	802	12%
Cat 3	2,084	2,516	21%
Cat 4	3,232	3,285	2%
Cat 5	564	715	27%
Cat 6	3,452	3,487	1%
Cat 7	268	258	-4%
Cat 8	4,282	5,480	28%
Cat 9	2,665	2,785	5%
Cat 10	2,884	3,022	5%
Total Employment	20,263	22,480	11%
Preschool Enrollment	1,956	1,956	0%
Deplanements	0	0	

2.4 MODEL NETWORK

The 2019 model network was updated to include road projects completed by the 2019 base year, listed in Table 3. In addition to these projects, intersection control was coded on model nodes based on GIS line data for intersections in the MSB provided by DOT&PF.

TABLE 3: 2019 BASE NETWORK UPDATES (COMPLETED PROJECTS)

Project Name	From	To	Description
Parks Highway	Church Rd	Big Lake Rd	Upgraded to 4 lane divided highway
Knik Goose Bay Road	Palmer Wasilla Highway	Clapp St	Upgraded to 4 lane divided highway

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Katherine Drive (Trunk Road Connector)	Stringfield Rd	Trunk Rd	New link, 2 lane collector
Edgerton Parks Road	Palmer Fishhook	Mountain Trails Dr	Upgrade local to 2 lane collector
Felton Street	Palmer Wasilla Hwy	Josh Dr	New link, 2 lane local
Bogard Rd	Trunk		Add existing Roundabouts at Trunk and Seldon
Lucille St	Seldon		Roundabout

3.0 MODEL CALIBRATION AND VALIDATION

3.1 MODEL CALIBRATION AND VALIDATION

Model TAZs

The model transportation analysis zone (TAZ) system was retained as-is from Interregional Corridor Study (IRCS) update to a 2019 base year. A field denoting whether the zone is within the MVP MPA boundary was added to allow for separate reporting in this region.

Trip Generation

Separate trip generation rates were introduced for the MSB and for the Anchorage and Eagle River areas by adjusting existing rates from the prior AMATS model to improve assignment errors in each region.

Trip Distribution

Destination Choice model coefficients were updated for HBW, HBC, and HBO trip purposes to better align model trip lengths with the survey and improve calibration in the MVP MPA.

External Trips

The model uses an exogenous external trip matrix for trips entering, exiting, or passing through the model region. The matrix of external trips to and from 3 external stations were adjusted using Iterative Proportional Fitting (IPF) to match 2019 traffic counts.

For 2050, the 2019 traffic counts were grown using the Compound Annual Growth Rate (CAGR) calculated from 20 years of traffic count history at each external station.

Assignment Validation

Traffic assignment validation statistics were generated separating traffic counts into statistics by volume grouping and functional classification for both the MSB ESA and the MPA. RSG adopted the Florida DOT Florida State Urban Transportation Model System (FSUTMS) validation guidelines¹⁴ to assist in the determination of a properly validated model. The FSUTMS guidelines have two levels of maximum acceptable error: “acceptable” and “preferred.”

The difference between modeled flows and base year traffic counts is the model error. Error statistics are calculated as a percentage of the traffic count, called percent error, and in terms of root mean square error (RMSE). The calculation of RMSE, which can also be described as the

¹⁴ Florida Department of Transportation and Cambridge Systematics. *FSUTMS-Cube Framework Phase II—Model Calibration and Validation Standards—Final Report*. 2008.

standard deviation of the residuals, is shown in Equation 2. Percent RMSE is the RMSE divided by the average observed count value and expressed as a percent.

EQUATION 2: ROOT MEAN SQUARE ERROR

$$RMSE = \sqrt{\frac{\sum(y_i - \hat{y}_i)^2}{N}}$$

Where y is the predicted volume (modeled demand) and \hat{y} is the observed traffic count, and N is the number of observations.

Table 4 shows the model validation statistics for the MSB ESA by volume range compared to FSUTMS acceptable and preferred ranges. As volume range increases, percent error decreases as there are larger negative errors for higher volume links and percent RMSE decreases monotonically for higher volume links. Most percent error values fall within the preferred range, except overall percent error in the MSB ESA is -5.5%, slightly below the -5% lower threshold for acceptable difference. This value was -4.3% in the previous model run, prior to the addition of traffic signals at intersection in the MSB ESA. All Percent RMSE values fall within the acceptable range and 5-10k, 10-15k, and 15-20k are within the preferred range. 20-25k and 25-50k ranges are shown for reference but no links fall in these ranges in the MSB ESA.

TABLE 4: MSB ESA VALIDATION STATISTICS BY VOLUME

VOLUME RANGE	PERCENT ERROR	FSUTMS ACCEPTABLE % DIFF	FSUTMS PREFERRED % DIFF	PERCENT RMSE	FSUTMS ACCEPTABLE RMSE	FSUTMS PREFERRED RMSE
0-5k	0.3%	50%	+/- 25%	53.08%	100%	45%
5-10k	-10.1%	50%	+/- 25%	29.87%	45%	35%
10-15k	-7.80%	30%	+/- 20%	21.52%	35%	27%
15-20k	-12.80%	30%	+/- 20%	15.22%	30%	25%
20-25k	NDA	30%	20%	NDA	27%	15%
25-50k	NDA	30%	20%	NDA	25-27%	15%
Total	-5.5%	+/-5%	+/-3%	43.80%	45%	35%

Table 5 shows the model validation statistics for the MPA by volume range compared to FSUTMS acceptable and preferred ranges. There is more negative error in the 5-10k and 15-20k ranges and overall percent error sits right at -5% within the acceptable range. All Percent RMSE values fall within the acceptable range and 5-10k, 10-15k, and 15-20k are within the

preferred range. 20-25k and 25-50k ranges are shown for reference but no links fall in these ranges in the MPA.

TABLE 5: MVP MPA VALIDATION STATISTICS BY VOLUME

VOLUME RANGE	PERCENT ERROR	FSUTMS ACCEPTABLE % DIFF	FSUTMS PREFERRED % DIFF	PERCENT RMSE	FSUTMS ACCEPTABLE RMSE	FSUTMS PREFERRED RMSE
0-5k	-0.2%	50%	+/- 25%	50.59%	100%	45%
5-10k	-12.8%	50%	+/- 25%	31.67%	45%	35%
10-15k	3.7%	30%	+/- 20%	5.19%	35%	27%
15-20k	-9.6%	30%	+/- 20%	11.01%	30%	25%
20-25k	NDA	30%	20%	NDA	27%	15%
25-50k	NDA	30%	20%	NDA	25-27%	15%
Total	-5.0%	+/-5%	+/-3%	37.90%	45%	35%

Because the model system contains two areas for validation, the validation criteria for the federal metropolitan planning area (MPA) is considered the priority validation metric. The model system is well validated for the MPA, and falls closer to the preferred range of validation criteria for model validation. The MSB ESA area is well validated with most of the metrics falling closer to the preferred range criteria. The MSB ESA area-wide percent error is just slightly outside benchmarks by 0.5%, but not by a margin that would be anticipated to significantly change insights at this level. The model system meets federal and industry criteria for regional planning.

3.2 FUTURE FORECAST PREPARATION

Future Baseline (no-build) network

The state of the system in the planning horizon year (2050) absent any future changes other than those known to be funded is an important reference point, known as the “No Build” or “Existing plus Committed” alternative. Table 6 lists the projects programmed by DOT&PF and the MatSu Borough and either built after 2019, currently under construction, or expected to be completed by 2050.

TABLE 6: COMMITTED PROJECTS TO BE CONSTRUCTED BY 2050

Project Name	From	To	Description

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Glenn Highway Phase 1	Arctic Ave	Inner Springer Loop	Upgraded to 4 lane divided highway
Glenn Highway Phase 2	Inner Springer Loop	Glenn/Parks Interchange	Upgraded to 4 lane divided highway
Glenn Highway future phase	Arctic Ave	Palmer Fishhook	Upgraded to 4 lane divided highway; add Signal at Palmer Fishhook
Seward Meridian Parkway	Palmer Wasilla	Seldon	Upgraded to 4 lane minor arterial
Palmer Fishhook	Trunk Rd		Roundabout
Bogard Rd	Trunk Rd	Seldon	Upgrade to divided arterial; add Roundabouts at Moose (Cottonwood Loop) and Greentree
Wasilla Main Street Couplet	Bogard Rd	Palmer Wasilla Hwy	Main St upgraded to 4 lanes
Hermon Rd	Parks Hwy	Palmer Wasilla Hwy	New link 2 lane
Hemmer Rd	Palmer Wasilla Hwy	Bogard Rd	New link 2 lane
Bogard Rd	Engstrom		Roundabout
Hollywood	Vine		Roundabout
Wasilla Fishhook	Peck		Roundabout
Knik Goose Bay	Clapp	Vine	Upgrade to 4 lane divided
Knik Goose Bay	Vine	Settlers Bay	Upgrade to 4 lane divided
Shaw Elementary Access at Foxtrot		Wasilla Fishhook	Extend Foxtrot and upgrade to Collector; add Roundabouts at

		Foxtrot/Paradise/Wasilla Fishhook
Tex-AI Drive Extension		Extend and upgrade to 40 mph Collector
Engstrom Rd Extension		Extend north to Tex-AI Dr
Green Forest Dr	Bogard	Upgrade to 35 mph Collector
Hemmer Rd	Palmer Wasilla Hwy	Valley Pathways School (France Rd)
		Extend 2 lane Collector

Build alternative network

The Build alternatives have yet to be developed. This section of the report will be updated at a later date.

4.0 MODELED 2019 EXISTING CONDITIONS

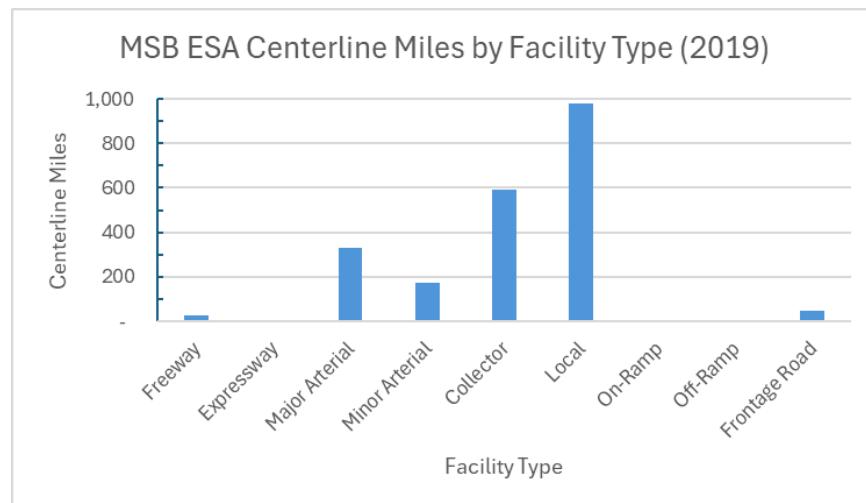
4.1 2019 BASE-YEAR AGGREGATE FINDINGS

TO VALIDATE THE MODEL FOR THE ADDED DETAIL IN THE MSB ESA, OUTPUTS ARE SUMMARIZED AT THE MSB ESA LEVEL INCLUDING MODEL DISTRICTS 3, 4, AND 5 AND FOR THE MVP MPA. TO UNDERSTAND THE MEANING OF THE FORECAST FINDINGS, SOME CONTEXT ABOUT THE BASE YEAR IS USEFUL. TABLE 7 AND

Figure 11 show 2019 system physical and performance summary statistics for MSB ESA. Table 8 and Figure 12 show the system physical and performance statistics for MVP MPA for the 2019 base year. The map in Figure 13 illustrates the layout of these roadway classes adopted from the Federal Highway Administration (FHWA) roadway functional classification system (note that the model uses “Freeway” for the FHWA class “Interstates”). These show that 72% of the modeled 2,160 roadway centerline miles¹⁵ in MSB ESA consist of Collectors and Local roads, and about 23% consist of Major and Minor Arterials. For the MVP MPA this correlates to 62% of approximately 1,000 roadway centerline miles for Collectors and Local roads, and 29% of Major and Minor Arterials.

TABLE 7: MSB ESA (DISTRICT 3,4,5) 2019 ESTIMATED DAILY VMT, VHT, AND VHD BY FACILITY TYPE¹⁶

Facility Type	Vehicle Miles of Travel	Vehicle Hours of Travel	Vehicle Hours of Delay	VHD as % of VHT	Centerline Miles	Share of VMT	Share of VHD
Freeway	122,460	1,912	3	0.1%	28	7.5%	0.9%
Expressway	-	-	-	0.0%	-	0.0%	0.0%
Major Arterial	867,032	19,349	248	1.3%	331	53.0%	75.2%
Minor Arterial	276,923	7,291	38	0.5%	176	16.9%	11.5%
Collector	210,872	5,973	17	0.3%	591	12.9%	5.2%
Local	131,865	4,999	13	0.3%	977	8.1%	3.9%
On-Ramp	6,945	155	1	0.5%	6	0.4%	0.3%
Off-Ramp	5,551	158	2	1.4%	5	0.3%	0.6%
Frontage Road	14,666	478	9	1.9%	47	0.9%	2.7%


¹⁵ Centerline miles reflect the directional links in the model network rather than physical roadway length. As a result, a one-mile roadway with separate northbound and southbound links is represented as two centerline miles.

¹⁶ The model facility type represented in this report corresponds to how the original AMATS model system was designed to categorize links in the model system for assignment with specific volume delay functions. While similar in name to administrative functional classifications, they are not the same.

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Total	1,636,314	40,315	330	0.8%	2,160	100.0%	100.0%
--------------	-----------	--------	-----	------	-------	--------	--------

FIGURE 11: MSB ESA 2019 MODELED ROAD CENTERLINE MILES BY FACILITY TYPE

TABLE 8: MVP MPA 2019 ESTIMATED DAILY VMT, VHT, AND VHD BY FACILITY TYPE

Facility Type	Vehicle Miles of Travel	Vehicle Hours of Travel	Vehicle Hours of Delay	VHD as % of VHT	Centerline Miles	Share of VMT	Share of VHD
Freeway	111,263	1,724	3	0.2%	23	9.5%	1.0%
Expressway	-	-	-	0.0%	-	0.0%	0.0%
Major Arterial	617,504	14,667	239	1.6%	174	52.9%	75.9%
Minor Arterial	207,371	5,884	36	0.6%	124	17.8%	11.4%
Collector	127,615	3,678	14	0.4%	213	10.9%	4.4%
Local	82,263	3,265	12	0.4%	411	7.0%	3.8%
On-Ramp	3,864	86	-	0.1%	4	0.3%	0.0%
Off-Ramp	3,163	105	2	2.1%	4	0.3%	0.6%
Frontage Road	14,666	478	9	1.9%	47	1.3%	2.9%
Total	1,167,708	29,887	315	1.1%	1,000	100.0%	100.0%

FIGURE 12: MVP MPA 2019 MODELED ROAD CENTERLINE MILES BY FACILITY TYPE

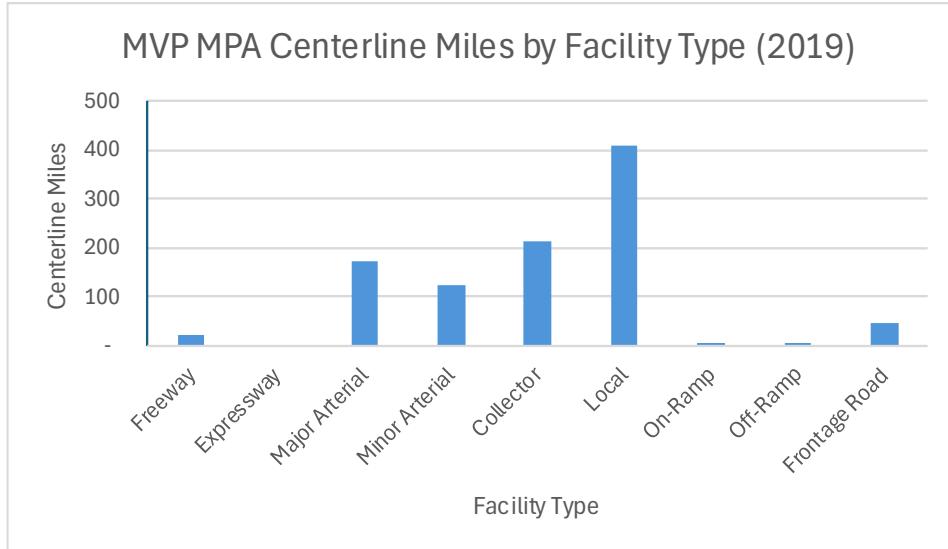
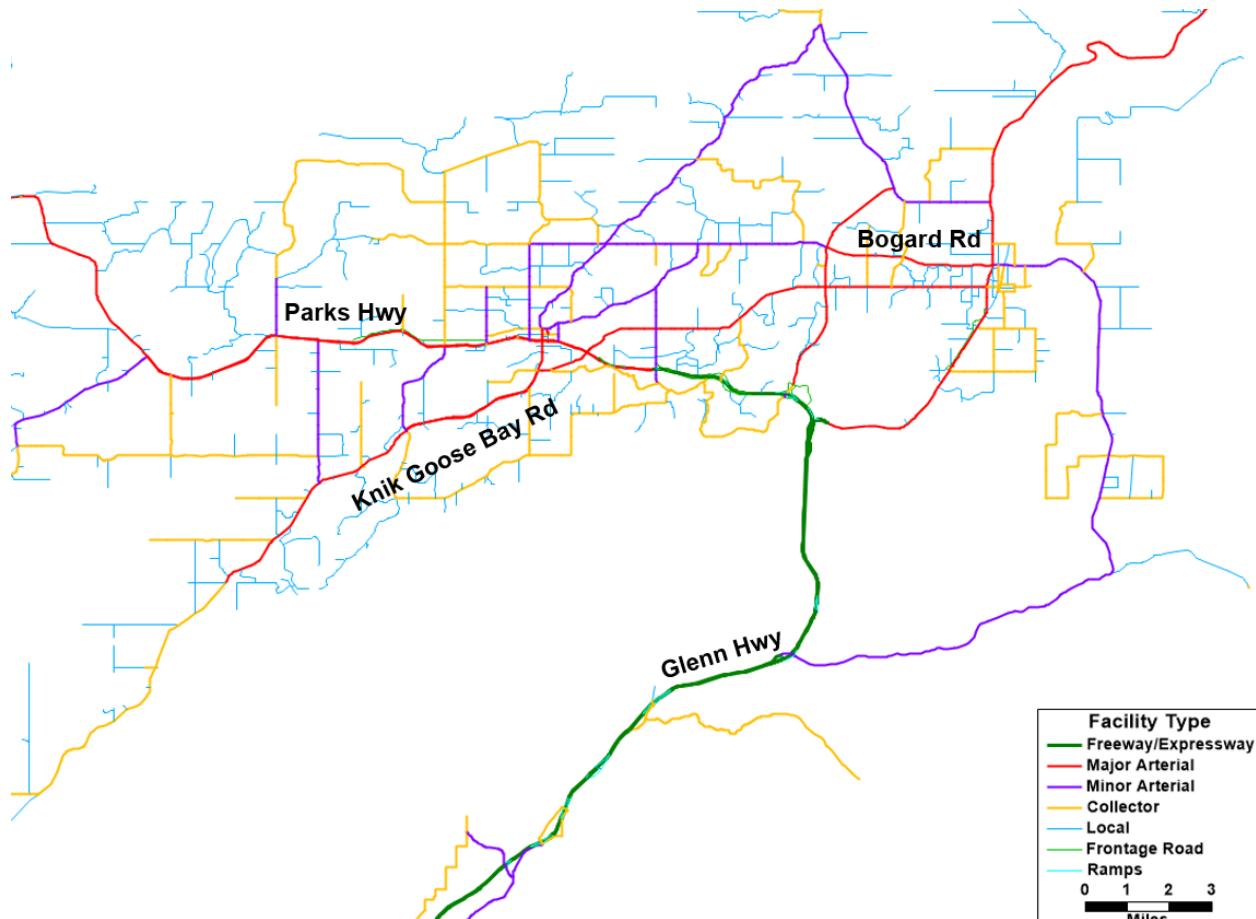
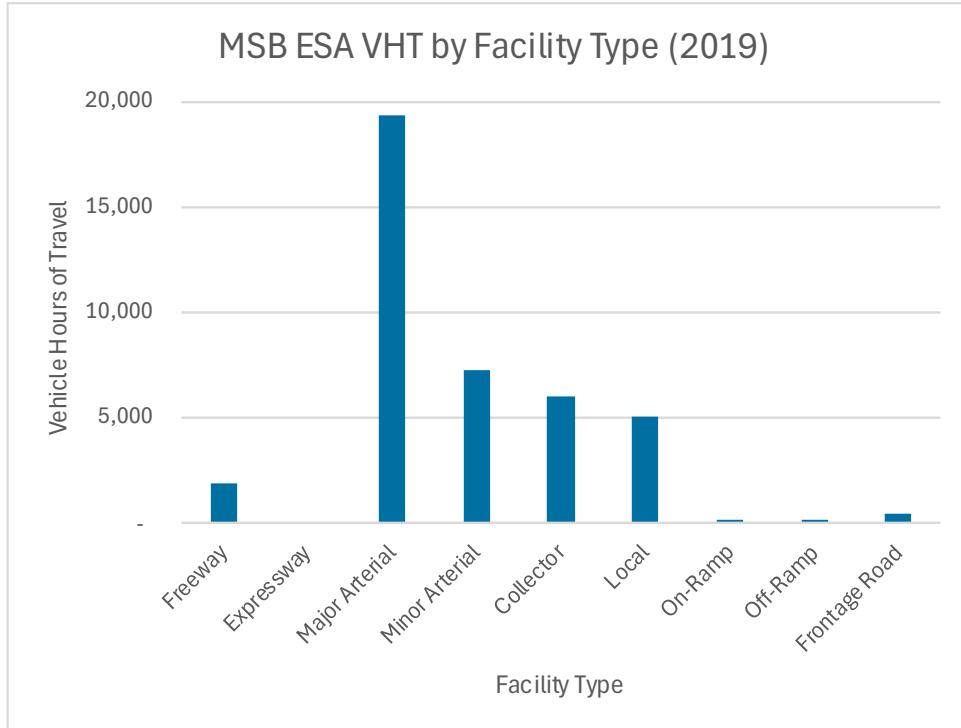
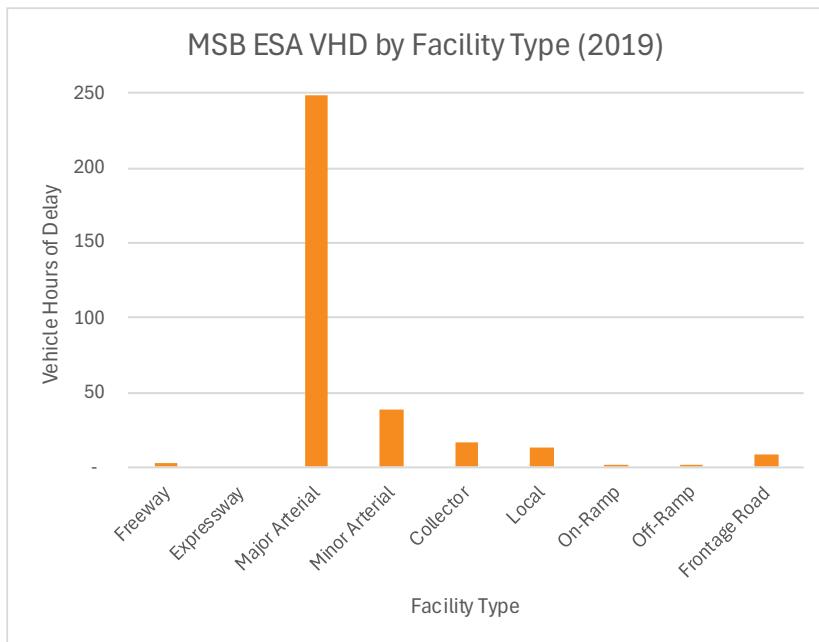
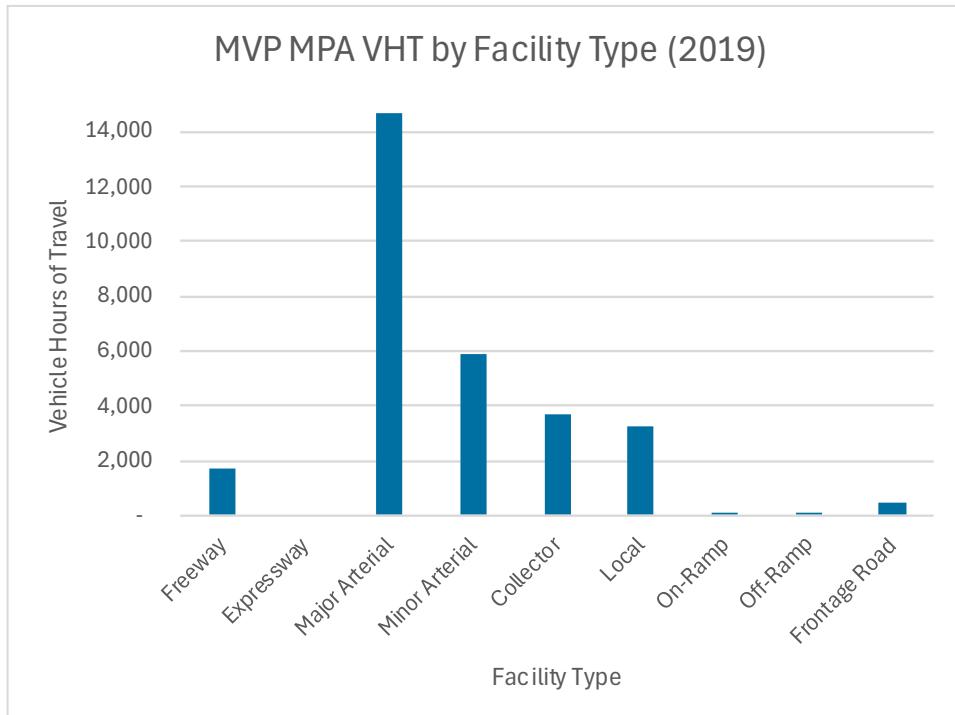



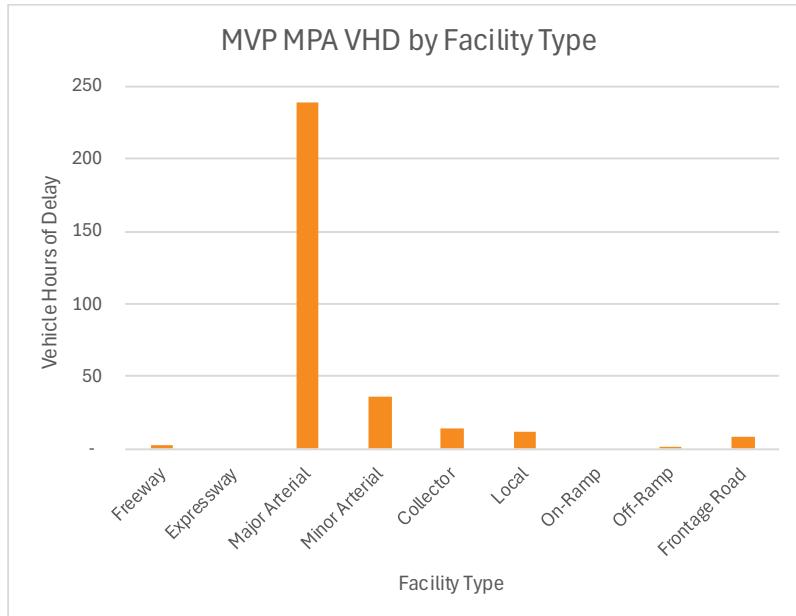
FIGURE 13: MODELED 2019 ROADS BY FACILITY TYPE¹⁷

In the MSB ESA, the model estimates over 2.23 million daily Vehicle Miles Traveled (VMT) and nearly 55,000 Vehicle Hours Traveled (VHT) on a typical day in 2019. Congestion in the model resulted in delays of 391 hours or 1% of VHT from free-flow conditions. Figure 14 and Figure 15 show the VHT and VHD by facility type for the MSB ESA.

¹⁷ The model uses “Freeway” for the FHWA class “Interstates”).

FIGURE 14: MSB ESA ESTIMATED 2019 VHT BY FACILITY TYPE


FIGURE 15: MSB ESA ESTIMATED 2019 VHD BY FACILITY TYPE

In the MVP MPA, the model estimates over 1.16 million VMT and nearly 30,000 VHT on a typical day in 2019. Congestion in the model resulted in delays of 315 hours or 1% of VHT from free-flow conditions. Figure 16 and Figure 17 show the VHT and VHD by facility type for the MVP MPA.

FIGURE 16 MVP MPA ESTIMATED 2019 VHT BY FACILITY TYPE

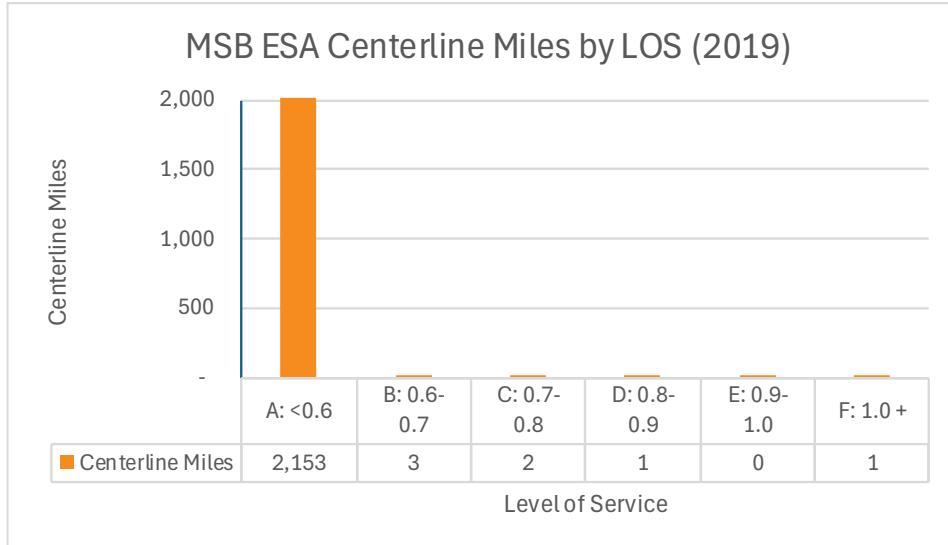
FIGURE 17 MVP MPA ESTIMATED 2019 VHD BY FACILITY TYPE

4.2 LOS AS MEASURED BY DEMAND OVER CAPACITY

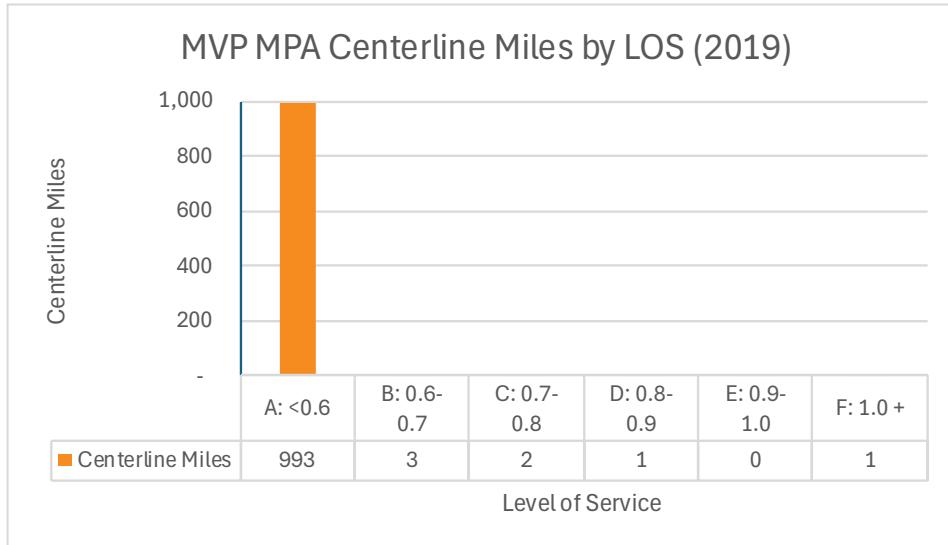
The model calculates Level of Service (LOS) based on the modeled demand to link capacity ratio for the peak period volume (the maximum volume in either AM or PM period) with breaks informed by the Table B-1 in the highway capacity manual (HCM). As the model demand assigned to a link approaches and exceeds capacity, the volume delay functions used in traffic assignment increase link travel times to model the resulting delay. The LOS grades signify degradation in performance as the demand over capacity approaches and exceeds 1. Table 9 summarizes VMT, VHT, and VHD for the set of links performing at each LOS grade in the MSB ESA. Table 10 shows the same summaries for links in the MVP MPA.

The vast majority of links in the model perform at free-flow conditions within LOS A. Figure 18 and Figure 19 show the comparison of centerline miles by LOS for the MSB ESA and MVP MPA, respectively. The VMT indicates the total distribution of travel along roadways with different operating conditions. The VHT represents the total travel time accumulated under each LOS. The VHD represents the total delay experienced under each LOS. These metrics reflect how congestion affects both the amount of travel, time and delay associated along the roadway network. Note that HDR has conducted a separate, more in depth LOS analysis.

2050 MVP MPO TRAVEL DEMAND MODEL REPORT


TABLE 9: 2019 MSB ESA DAILY VMT, VHT, AND VHD BY LOS

Level of Service	Vehicle Miles of Travel	Vehicle Hours of Travel	Vehicle Hours of Delay	VHD as % of VHT	Centerline Miles	% of Centerline Miles by LOS
A: <0.6	1,597,418	38,774	223	0.6%	2,153	99.7%
B: 0.6-0.7	17,930	747	45	6.0%	3	0.2%
C: 0.7-0.8	13,985	464	27	5.9%	2	0.1%
D: 0.8-0.9	5,310	203	15	7.2%	1	0.0%
E: 0.9-1.0	252	17	1	8.9%	0	0.0%
F: 1.0 +	1,419	110	19	17.0%	1	0.0%
Total	1,636,314	40,315	330	0.8%	2,160	100.0%


TABLE 10: 2019 MVP MPA DAILY VMT, VHT, AND VHD BY LOS

Level of Service	Vehicle Miles of Travel	Vehicle Hours of Travel	Vehicle Hours of Delay	VHD as % of VHT	Centerline Miles	% of Centerline Miles by LOS
A: <0.6	1,129,428	28,381	210	0.7%	993	99.3%
B: 0.6-0.7	17,315	712	43	6.0%	3	0.3%
C: 0.7-0.8	13,985	464	27	5.9%	2	0.2%
D: 0.8-0.9	5,310	203	15	7.2%	1	0.1%
E: 0.9-1.0	252	17	1	8.9%	0	0.0%
F: 1.0 +	1,419	110	19	17.0%	1	0.1%
Total	1,167,708	29,887	315	1.1%	1,000	100.0%

FIGURE 18: MSB ESA 2019 CENTERLINE MILES BY LEVEL OF SERVICE

FIGURE 19: MVP MPA 2019 CENTERLINE MILES BY LEVEL OF SERVICE

Peak Level of Service (LOS) refers to the maximum modeled demand over capacity ratio in either the AM (7-9 AM) or PM (3-6 PM) peak periods. For a given link, the demand over capacity from the most congested period is used to highlight the worst performance of either peak period. Figure 20 and Figure 21 show the Peak LOS along Parks Highway in Wasilla during the peak hour. It shows that for most of Parks Highway the LOS is showing no real congestion from a technical perspective, except for segments near other key intersections such as the Palmer-Wasilla Highway and Knik Goose Bay Road. Figure 22 shows the base LOS at the peak hour in the Palmer area, showing mostly LOS A.

FIGURE 20: 2019 BASE PEAK LOS ALONG PARKS HWY NEAR WASILLA

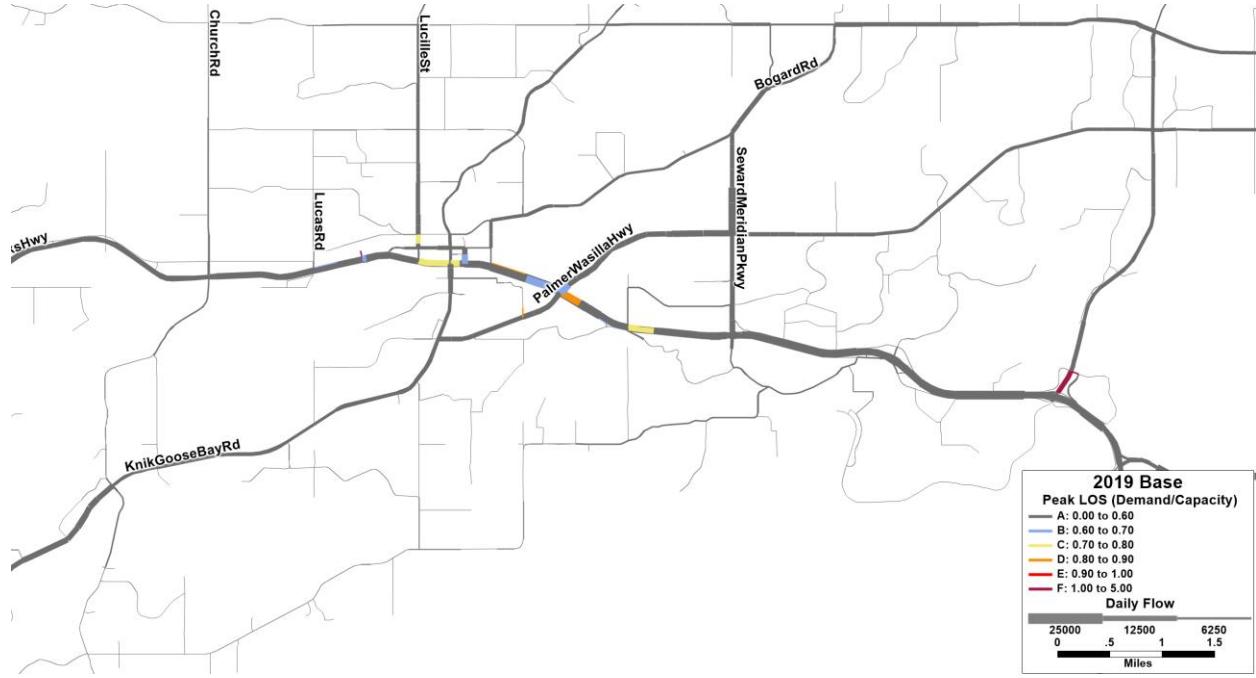
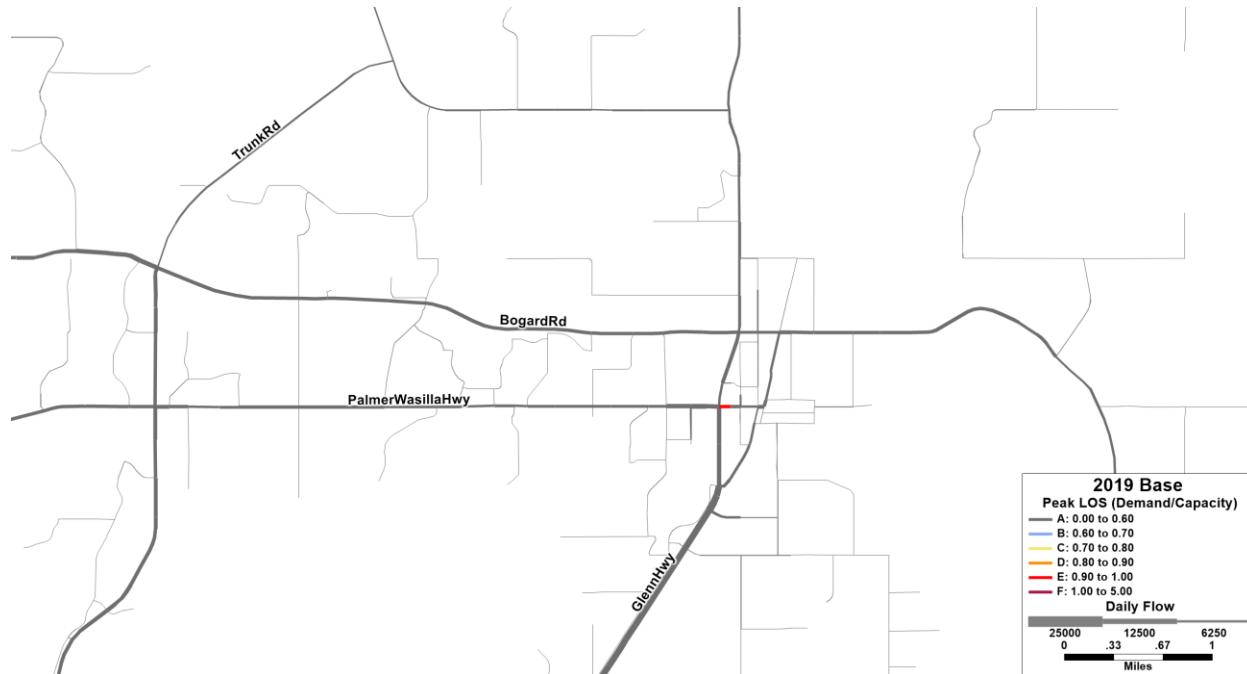



FIGURE 21: 2019 PEAK LOS ALONG PARKS HWY WEST OF WASILLA

FIGURE 22: 2019 BASE PEAK LOS NEAR PALMER

4.3 PERFORMANCE SUMMARY FOR SELECTED LINKS

The model calculates performance statistics for selected segments in the summary report. Selected segments include freeways and major arterials between interchanges and major intersections. The segments are key corridors that serve the MSB ESA, as shown in Figure 23. Table 11 shows the 2019 base year VMT, VHT and VHD summaries for each of the roadway segments. Parks Hwy, which is the main East-West corridor in the MSB ESA, consists of 97 centerline miles, with 400,047 total VMT and 128 VHD, which represents 1.5% of the total 8,537 VHT. The Glenn Hwy segment, which is the main corridor leading to Palmer from Anchorage, sees 94,252 VMT with 45 VHD, which correlates to 2.27% of VHT. The Palmer Wasilla Hwy is the primary corridor connecting Palmer to Wasilla and sees about 93,155 VMT on the 29 miles of roadway, with 61 VHD corresponding to 2.38% of VHT. The Seldon Rd corridor is a northern East-West corridor connecting residential areas to other main corridors such as Bogard Rd. The Seldon Rd segments consist of 18 centerline miles of roadway with 22,289 VMT, with 1 VHD which is less than 1% of the VHT. The Bogard Rd corridor is an essential connection to Palmer from Wasilla. This corridor consists of 35 centerline miles of roadway with 93,155 VMT and 8 VHD which is less than 1% of the VHT. Knik Goose Bay Rd is the main corridor connecting the Southwest of Mat-Su with the rest of MSB. It consists of 24 total centerline miles of roadway and 62,869 VMT with 5 VHD, which is less than 1% of the total VHT for the corridor. Trunk Rd is a North-South corridor near Palmer and Wasilla that has 15 centerline miles of roadway and 36,679 VMT, and only 8 VHD which is 1.05% of the VHT.

FIGURE 23: MAP OF SEGMENTS SELECTED FOR CORRIDOR REPORTING

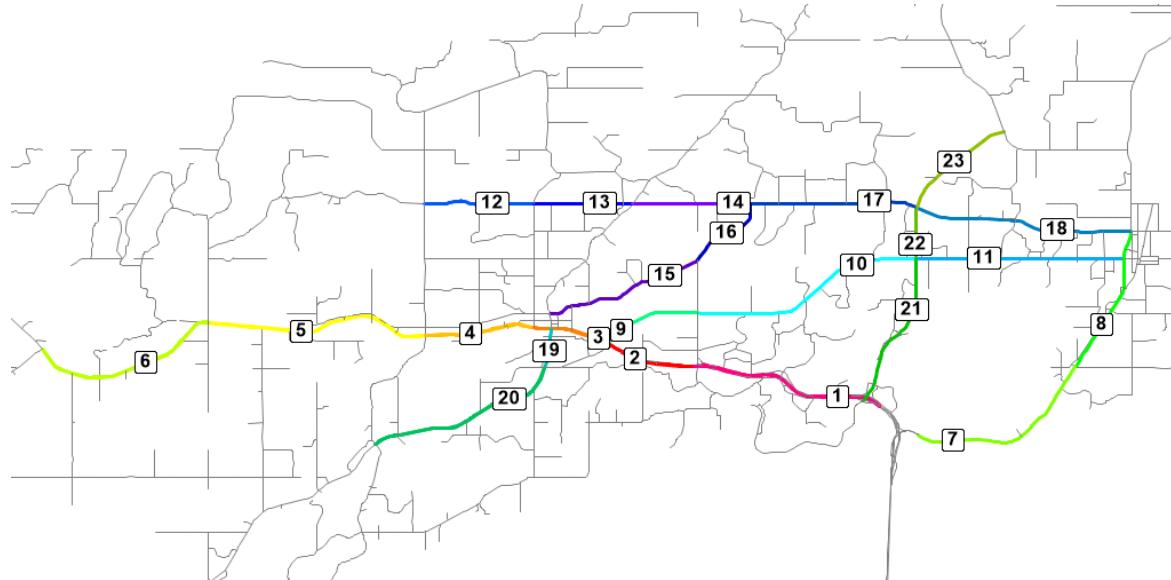


TABLE 11: DAILY VMT, VHT, AND VHD ON SELECTED CORRIDORS

SEGMENT	2019 VMT	2019 VHT	2019 VHD	2019 DELAY AS % OF VHT
1. Parks Hwy between Trunk Rd and Seward Meridian Pkwy	103,854	1,610	3	0.2%
2. Parks Hwy between Seward Meridian Pkwy and Palmer Wasilla Hwy	54,179	1,358	30	2.2%
3. Parks Hwy between Palmer Wasilla Hwy and Lucille	45,426	1,285	49	3.8%
4. Parks Hwy between Lucille and Church	52,658	1,378	27	2.0%
5. Parks Hwy between Church and Pittman	94,054	1,894	16	0.8%
6. Parks Hwy between Pittman and Big Lake	49,876	1,012	3	0.3%
7. Glenn Hwy between Parks and Inner Springer	58,946	1,154	32	2.8%
8. Glenn Hwy between Inner Springer and Bogard/Arctic	35,306	827	13	1.6%
9. Palmer-Wasilla Hwy between Parks and Seward Meridian	26,636	880	51	5.8%
10. Palmer-Wasilla Hwy between Seward-Meridian and Trunk	37,055	902	6	0.7%
11. Palmer-Wasilla Hwy between Trunk and Glenn Hwy	28,747	782	4	0.5%

12. Seldon between Church and Lucille	5,526	166	0	0.0%
13. Seldon between Lucille and Wasilla-Fishhook	4,250	127	0	0.0%
14. Seldon between Wasilla-Fishhook and Bogard	12,513	389	1	0.3%
15. Bogard Rd between Wasilla-Fishhook and Seward-Meridian	19,040	568	2	0.4%
16. Bogard Rd between Seward-Meridian and Seldon/Bogard	12,954	302	2	0.7%
17. Bogard Rd between Seldon and Trunk	30,211	782	3	0.4%
18. Bogard Rd between Trunk and Glenn Hwy	30,950	755	1	0.1%
19. Knik Goose Bay Rd between Parks Hwy and Palmer-Wasilla	7,297	318	2	0.6%
20. Knik Goose Bay Rd between Palmer-Wasilla and Fairview Loop	55,572	1,133	3	0.3%
21. Trunk Rd between Parks Hwy and Palmer-Wasilla	18,591	418	8	1.9%
22. Trunk Rd between Palmer-Wasilla and Bogard	7,361	147	0	0.0%
23. Trunk Rd between Bogard and Palmer-Fishhook	10,727	195	0	0.0%

4.4 ESTIMATED ROADWAY VEHICLE VOLUMES AND DELAY

Figure 24 shows the modeled daily flow of the roadway network in the MSB ESA. Most of the roadways in the MSB ESA have 30,000 or less daily flow. Figure 25 shows the Vehicle Hours of Delay (VHD) in the PM period (3-6 pm) for the roadway network in the MSB ESA.

FIGURE 24: 2019 MODELED DEMAND IN MSB ESA

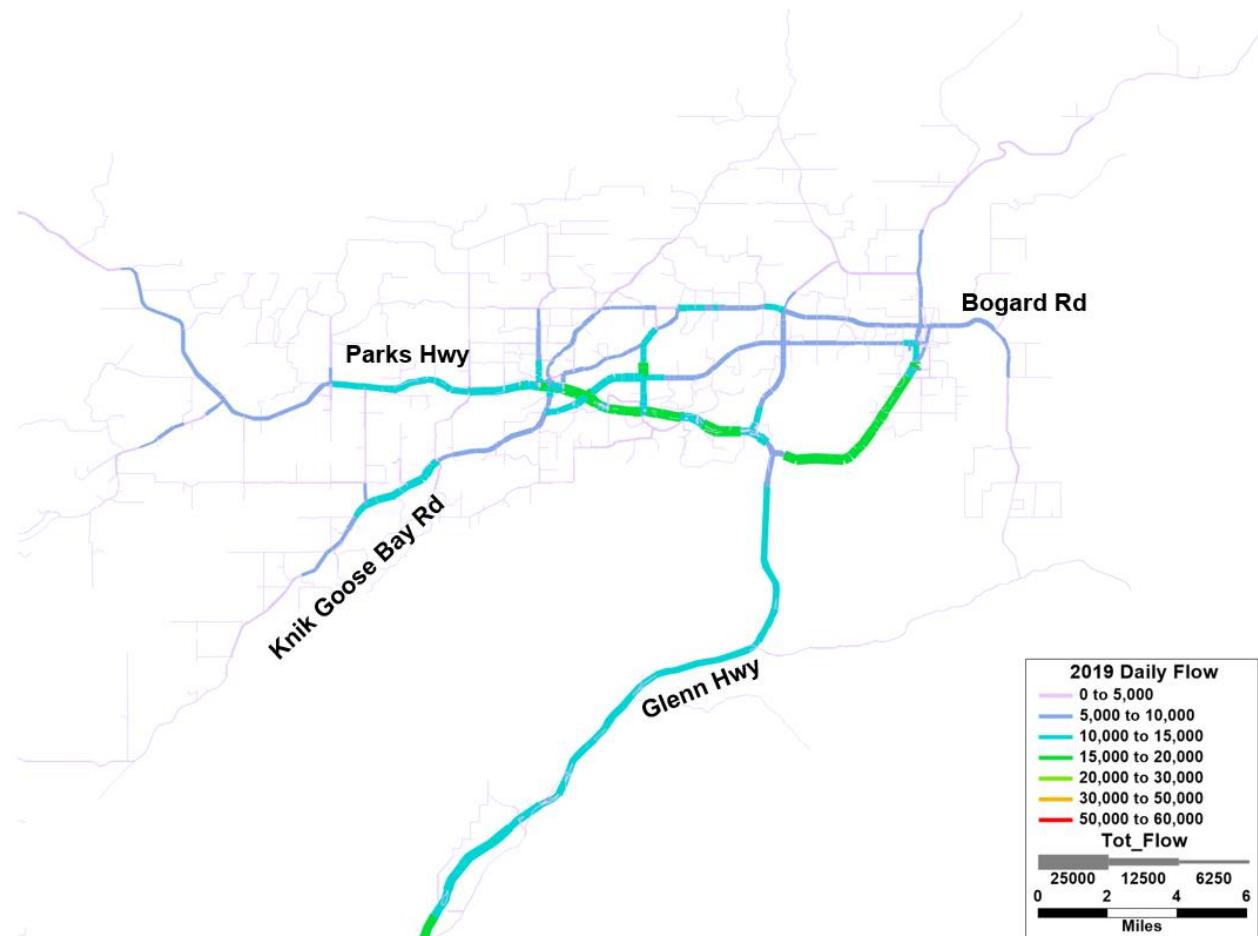
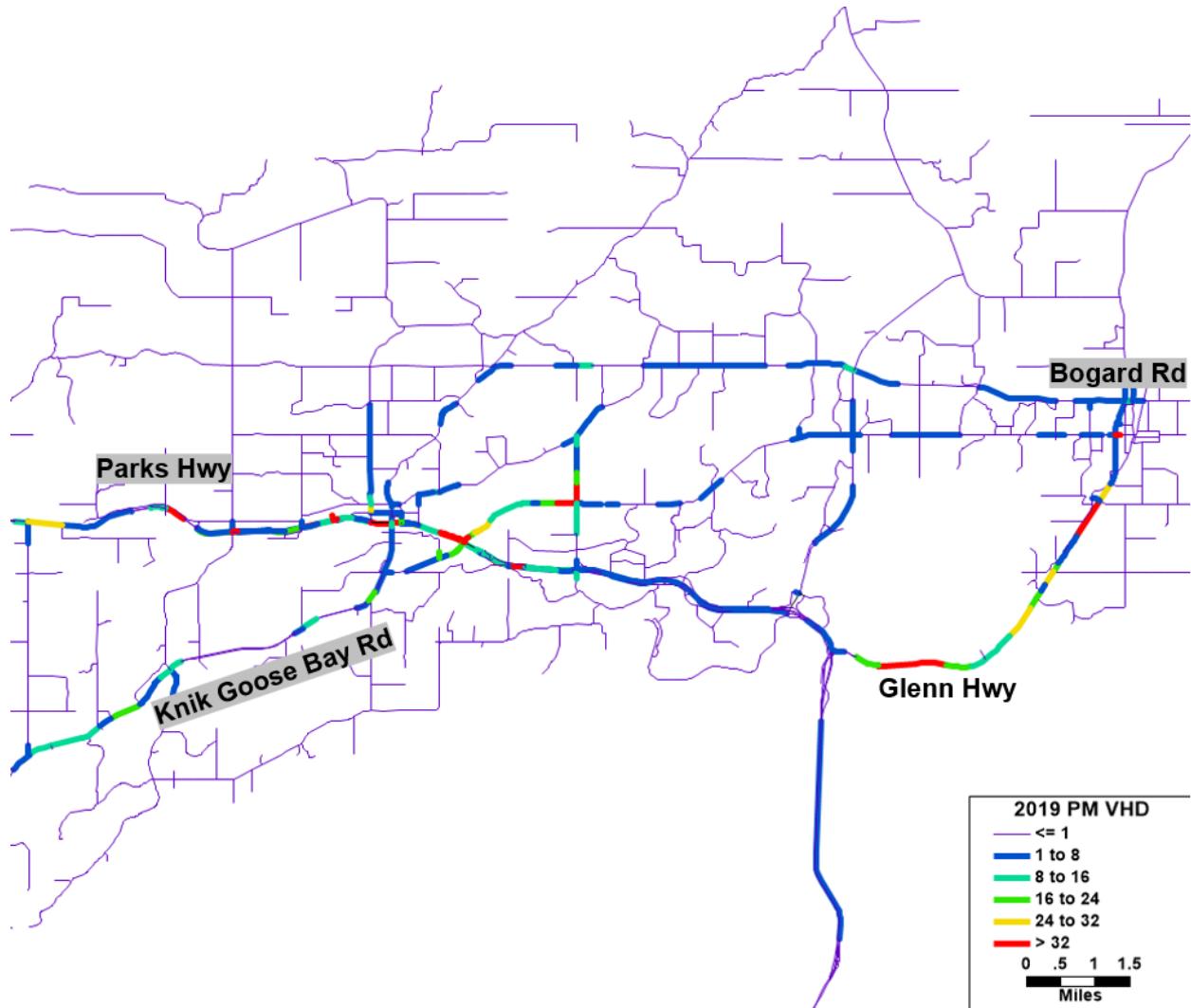



FIGURE 25: 2019 PM PERIOD (3-6 PM) VEHICLE HOURS OF DELAY

5.0 FORECAST FUTURE SYSTEM PERFORMANCE

5.1 2050 BASELINE SCENARIO (NO BUILD)

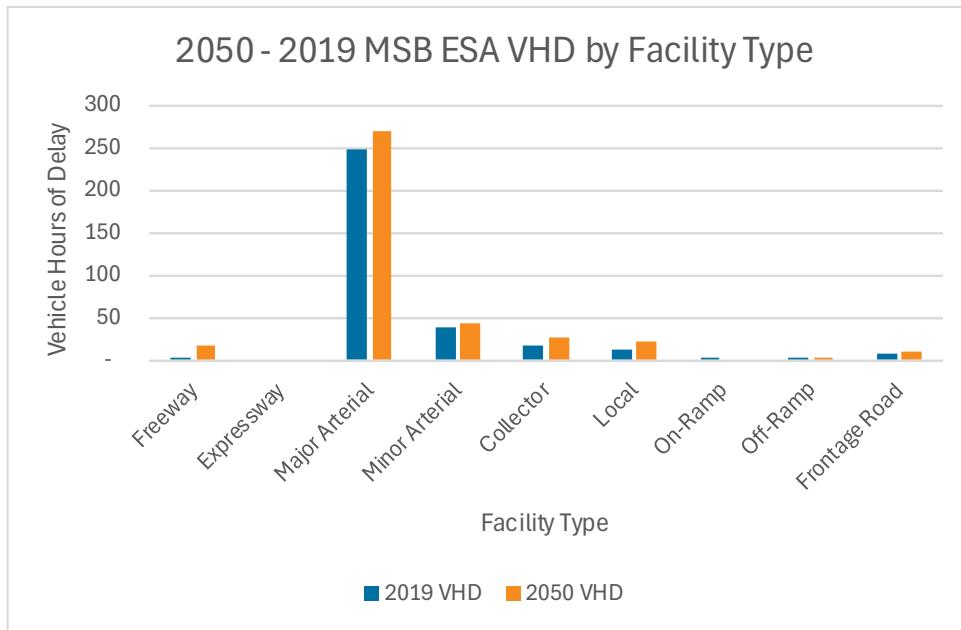
The 2050 no-build scenario shows the future system performance by using the forecasted socioeconomic data as described in Chapter 2.3 on the no-build network described in Chapter 3.2 and included several planned roadway projects. This is the baseline scenario against which the future year build scenario will be compared.

5.2 2050 BASELINE AGGREGATE FINDINGS

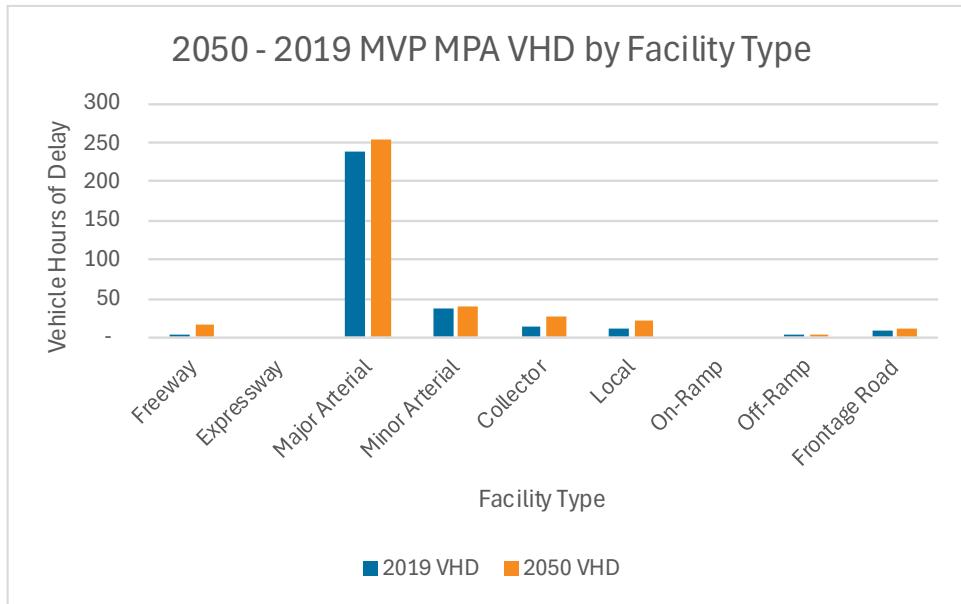
Table 12 provides a comparison of key performance statistics between the 2019 base year and the 2050 baseline scenario. The 2050 no-build scenario forecasted over 2.2 million daily VMT over 54,000 VHT in the MSB ESA. This corresponds to a 36% increase in VMT and 35% increase in VHT when compared to the 2019 base year. For the MVP MPA, as shown in Table 13, the 2050 baseline scenario forecasted 1.5 million VMT over 38,000 VHT. This is a 29% increase in VMT and VHT when compared to the 2019 base year. VHD is also expressed as a percentage of VHT to indicate the relative amount of delay.

TABLE 12: MSB ESA 2050 NO BUILD FORECAST AND 2019 BASE YEAR ESTIMATES DAILY VMT, VHT, AND VHD COMPARISON

Facility Type	2019 VMT	2050 VMT	2019 VHT	2050 VHT	2019 VHD	2050 VHD	2019 VHD as % of VHT	2050 VHD as % of VHT
Freeway	122,460	175,568	1,912	2,747	3	17	0.1%	0.6%
Expressway	-	-	-	-	-	-	0.0%	0.0%
Major Arterial	867,032	1,142,802	19,349	25,297	248	270	1.3%	1.1%
Minor Arterial	276,923	371,682	7,291	9,815	38	43	0.5%	0.4%
Collector	210,872	332,648	5,973	9,193	17	27	0.3%	0.3%
Local	131,865	178,070	4,999	6,684	13	21	0.3%	0.3%
On-Ramp	6,945	7,923	155	176	1	-	0.5%	0.1%
Off-Ramp	5,551	6,438	158	184	2	2	1.4%	1.4%
Frontage Road	14,666	15,704	478	513	9	10	1.9%	1.9%
Total	1,636,314	2,230,834	40,315	54,608	330	391	0.8%	0.7%
2050/2019 PctDiff			36%		35%		18%	

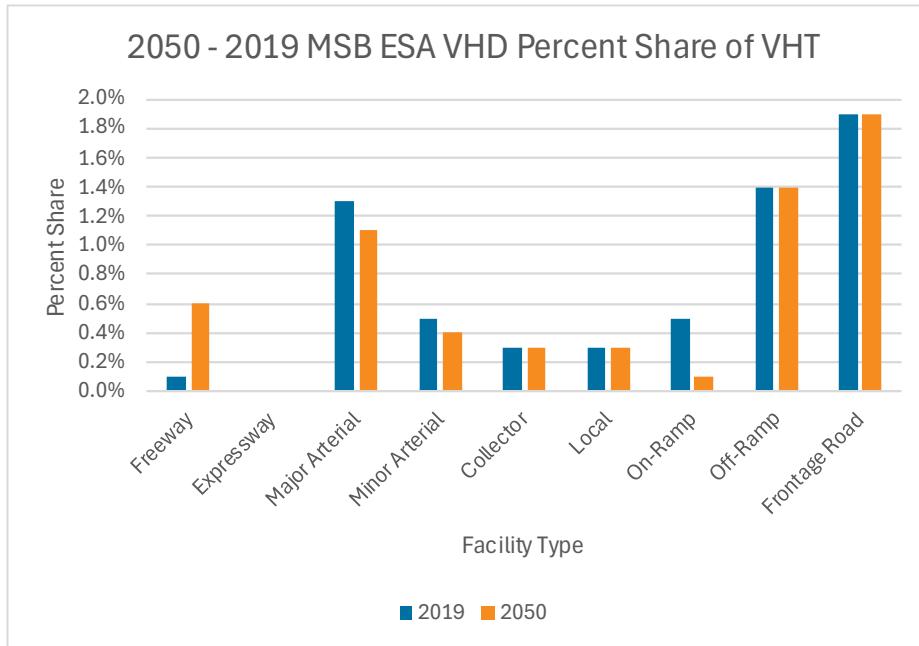

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

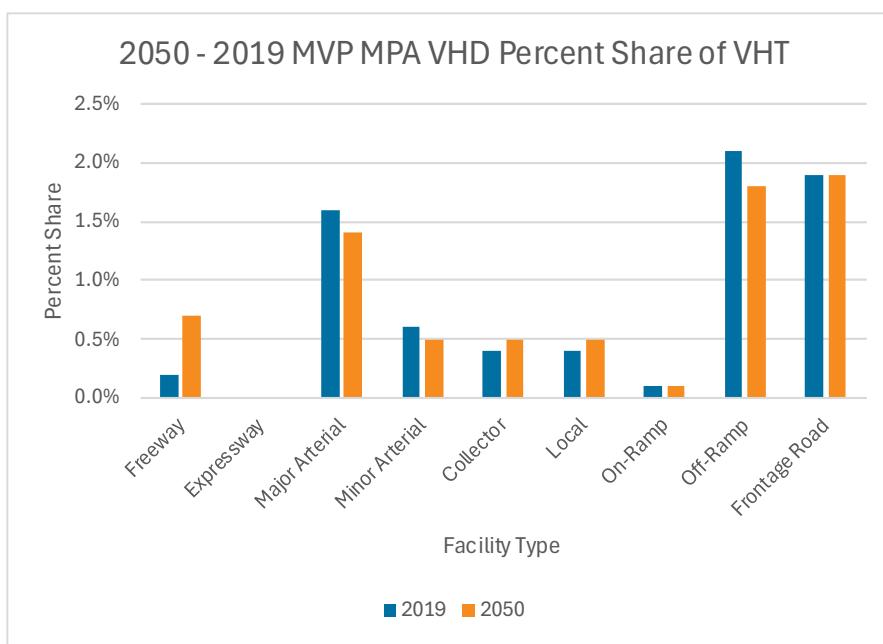
Major Arterials and Collector roads saw the biggest increase in VMT for Major Arterials and Collector Roads in MSB ESA, growing nearly 275,770 daily VMT and 121,776 daily VMT, respectively. The Major Arterials saw an increase in VHD, but so did Freeways and Collectors, as shown in Figure 26. Freeways saw a 467% increase from the 2019 base-year, but this still correlates to less than 1% of VHD of VHT. For the MVP MPA the Collector roads saw an 86% increase in VHD and 75% increase for Local roadways, see Figure 27, for comparison of VHD for MVP area from 2019 and 2050.


TABLE 13: MVP MPA 2050 NOBUILD FORECAST AND 2019 BASE-YEAR ESTIMATES DAILY VMT, VHT, AND VHD COMPARISON

Facility Type	2019 VMT	2050 VMT	2019 VHT	2050 VHT	2019 VHD	2050 VHD	2019 VHD as % of VHT	2050 VHD as % of VHT
Freeway	111,263	157,993	1,724	2,460	3	16	0.2%	0.7%
Expressway	-	-	-	-	-	-	0.0%	0.0%
Major Arterial	617,504	765,602	14,667	18,249	239	255	1.6%	1.4%
Minor Arterial	207,371	268,436	5,884	7,771	36	41	0.6%	0.5%
Collector	127,615	189,150	3,678	5,323	14	26	0.4%	0.5%
Local	82,263	100,027	3,265	3,963	12	21	0.4%	0.5%
On-Ramp	3,864	5,196	86	116	-	-	0.1%	0.1%
Off-Ramp	3,163	4,243	105	135	2	2	2.1%	1.8%
Frontage Road	14,666	15,704	478	513	9	10	1.9%	1.9%
Total	1,167,708	1,506,351	29,887	38,530	315	373	1.1%	1.0%
2050/2019 PctDiff		29%		29%		18%		

FIGURE 26: MSB ESA 2050 NOBUILD FORECAST DAILY VHD COMPARED TO 2019 BASE-YEAR ESTIMATES


FIGURE 27: MVP MPA 2050 NOBUILD FORECAST DAILY VHD COMPARED TO 2019 BASE-YEAR ESTIMATES


For both the MSB ESA and MVP MPA the percentage share comparison between 2019 and 2050 of VHD to VHT can be seen in Figure 28 and Figure 29. In the MSB ESA, Freeways are

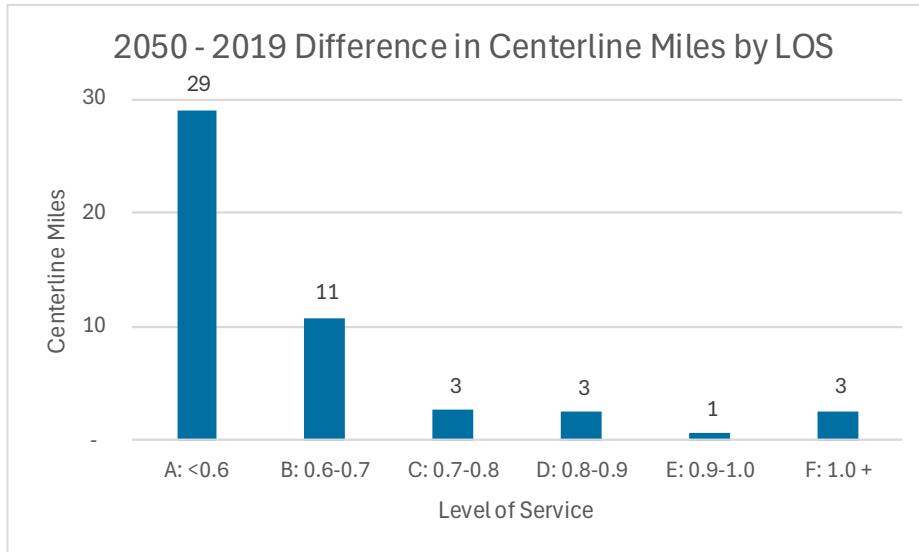
the only facility where the % share of VHD is greater in 2050 than the 2019 base-year. However, for the MVP MPA, Collectors and Local Roadways are also higher in 2050 than 2019.

FIGURE 28: MSB ESA 2050 NO BUILD FORECAST DAILY VHD SHARE OF VHT COMPARED TO 2019 BASE YEAR ESTIMATES

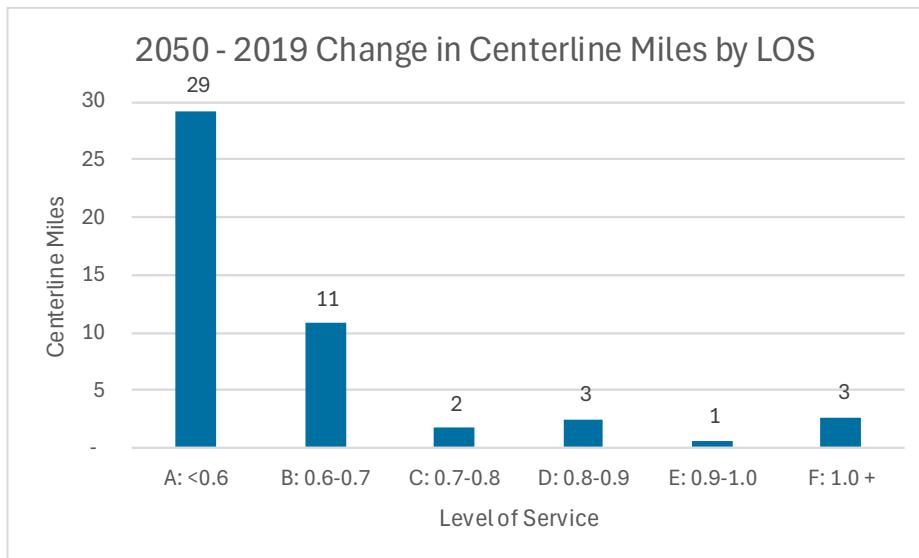
FIGURE 29: MVP MPA 2050 NO BUILD FORECAST DAILY VHD PERCENT SHARE OF VHT COMPARED TO 2019 BASE YEAR ESTIMATES

5.3 2050 BASELINE LEVEL OF SERVICE BY D/C

Table 14 and Table 15 show centerline miles by Level of Service (LOS) comparing 2019 and 2050 for both the MSB ESA and MVP MPA. This LOS measure is based on the modeled demand assigned to a link over its assumed capacity (D/C). There is a difference of 48 centerline miles between the 2019 roadway network and the 2050 no-build network in the MSB ESA, with 47 of those being in the MVP MPA. This reflects the addition of new model links representing new road connections and extensions. With the increase of population and jobs and travel demand from 2019 to 2050 the road network performs similarly in the LOS measure. There is a slight increase in LOS E and F in 2050 but the vast majority of modeled roads perform at LOS A in the MSB ESA and MVP MPA. Figure 30 and Figure 31 show the difference in LOS roadways from 2050 and 2019 for the MSB ESA and MVP MPA.

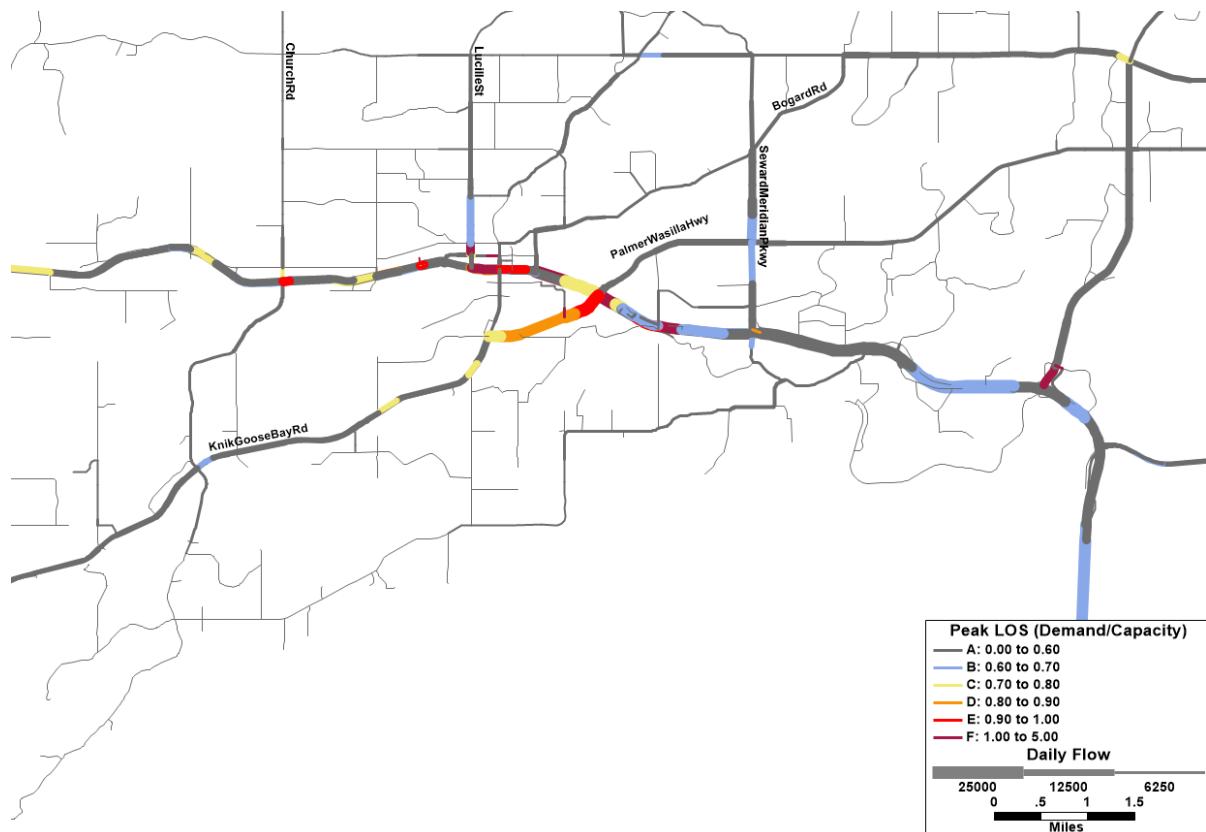

TABLE 14: MSB ESA 2050 NO BUILD FORECAST ROAD CENTERLINE MILES BY LOS CATEGORY COMPARED TO 2019 BASE YEAR ESTIMATES

Level of Service (D/C)	2019 Centerline Miles	2050 Centerline Miles	2019-2050 Change in Centerline Miles	2019 % of Centerline Miles by LOS	2050 % of Centerline Miles by LOS
A: <0.6	2,153	2,182	29	99.7%	98.8%
B: 0.6-0.7	3	14	11	0.2%	0.6%
C: 0.7-0.8	2	4	2	0.1%	0.2%
D: 0.8-0.9	1	3	2	0.0%	0.2%
E: 0.9-1.0	0	1	1	0.0%	0.0%
F: 1.0 +	1	3	2	0.0%	0.2%
Total	2,160	2,208	48	100.0%	100.0%


TABLE 15: MVP MPA 2050 NOBUILD FORECAST ROAD CENTERLINE MILES BY LOS CATEGORY COMPARED TO 2019 BASE-YEAR ESTIMATES

Level of Service (D/C)	2019 Centerline Miles	2050 Centerline Miles	2019-2050 Change in Centerline Miles	2019 % of Centerline Miles by LOS	2050 % of Centerline Miles by LOS
A: <0.6	993	1,022	29	99.3%	97.6%
B: 0.6-0.7	3	14	11	0.3%	1.3%
C: 0.7-0.8	2	3	1	0.2%	0.3%
D: 0.8-0.9	1	3	2	0.1%	0.3%
E: 0.9-1.0	0	1	1	0.0%	0.1%
F: 1.0 +	1	3	2	0.1%	0.3%
Total	1,000	1,047	47	100.0%	100.0%

FIGURE 30: MSB ESA 2050 NOBUILD FORECAST CENTERLINE MILES DIFFERENCE FROM 2019 BY LOS CATEGORY


FIGURE 31: MVP MPA 2050 NOBUILD FORECAST CENTERLINE MILES DIFFERENCE FROM 2019 BY LOS CATEGORY

Peak Level of Service (LOS) refers to the maximum modeled demand over capacity ratio in either the AM (7-9 AM) or PM (3-6 PM) peak periods. For a given link, the demand over capacity from the most congested period is used to highlight the worst performance of either peak period. Figure 32 shows the model network near Wasilla symbolized by LOS category, where some dark red segments on the Parks Highway are performing at LOS F in the heaviest volume peak period. Figure 33 shows the Parks Highway west of Wasilla and Figure 34 shows

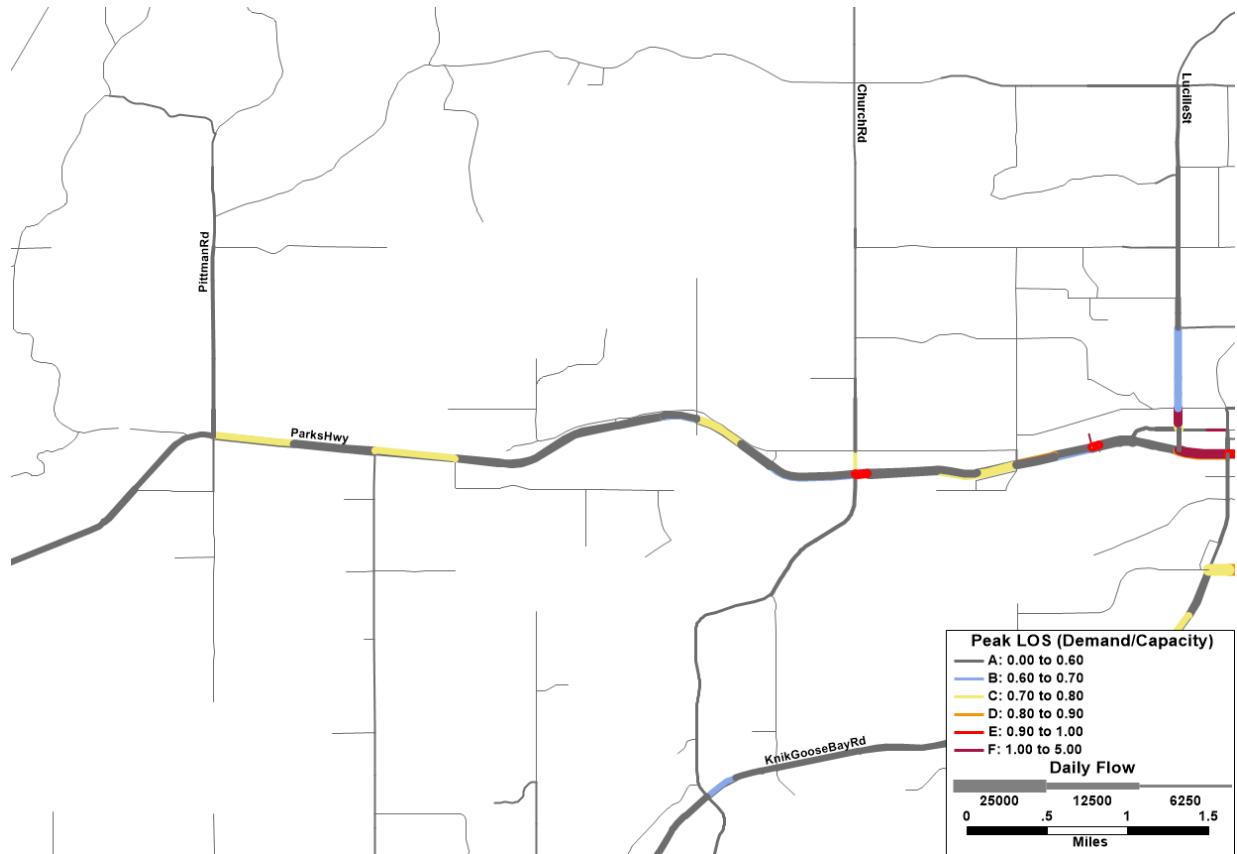
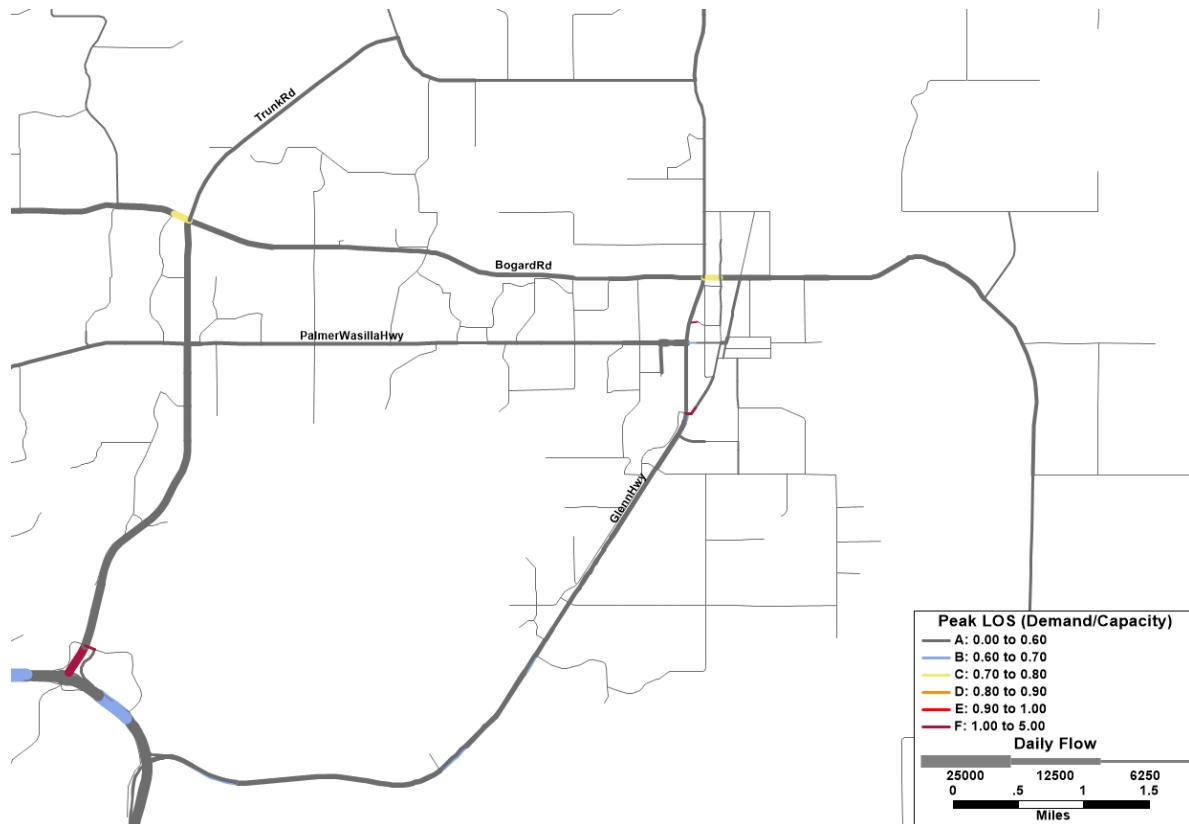

the network around Palmer, where only a few links experience degraded performance and excess delay in the peak periods.

FIGURE 32: 2050 BASELINE PEAK LOS NEAR WASILLA¹⁸



¹⁸ Peak Level of Service (LOS) refers to the maximum modeled demand over capacity ratio in either the AM (7-9 AM) or PM (3-6 PM) peak periods

FIGURE 33: 2050 BASELINE PEAK LOS ALONG PARKS HWY WEST OF WASILLA¹⁹

¹⁹ Peak Level of Service (LOS) refers to the maximum modeled demand over capacity ratio in either the AM (7-9 AM) or PM (3-6 PM) peak periods

FIGURE 34: 2050 BASELINE PEAK LOS NEAR PALMER²⁰

5.4 2050 BASELINE ROADWAY VEHICLE VOLUME AND DELAY

Figure 35 shows the modeled daily flow of the roadway network in the MSB area for the 2050 baseline scenario. Most of the increase in traffic flow is estimated to occur along the Glenn and Parks Highways and key arterials near Wasilla, such as Trunk Road, Knik Goose Bay Road, and the Palmer-Wasilla Highway. Figure 36 shows the PM (3-6 PM) Vehicle Hours of Delay (VHD) for the 2050 baseline scenario in the MSB area. This map shows increased VHD in the PM period along the Parks and Palmer-Wasilla Highways and along the Knik Goose Bay Road due to increased demand and decreased VHD along the Glenn Highway into Palmer due to projects that increased capacity on the Glenn Highway.

²⁰ Peak Level of Service (LOS) refers to the maximum modeled demand over capacity ratio in either the AM (7-9 AM) or PM (3-6 PM) peak periods

FIGURE 35: 2050 BASELINE DAILY MODELED DEMAND

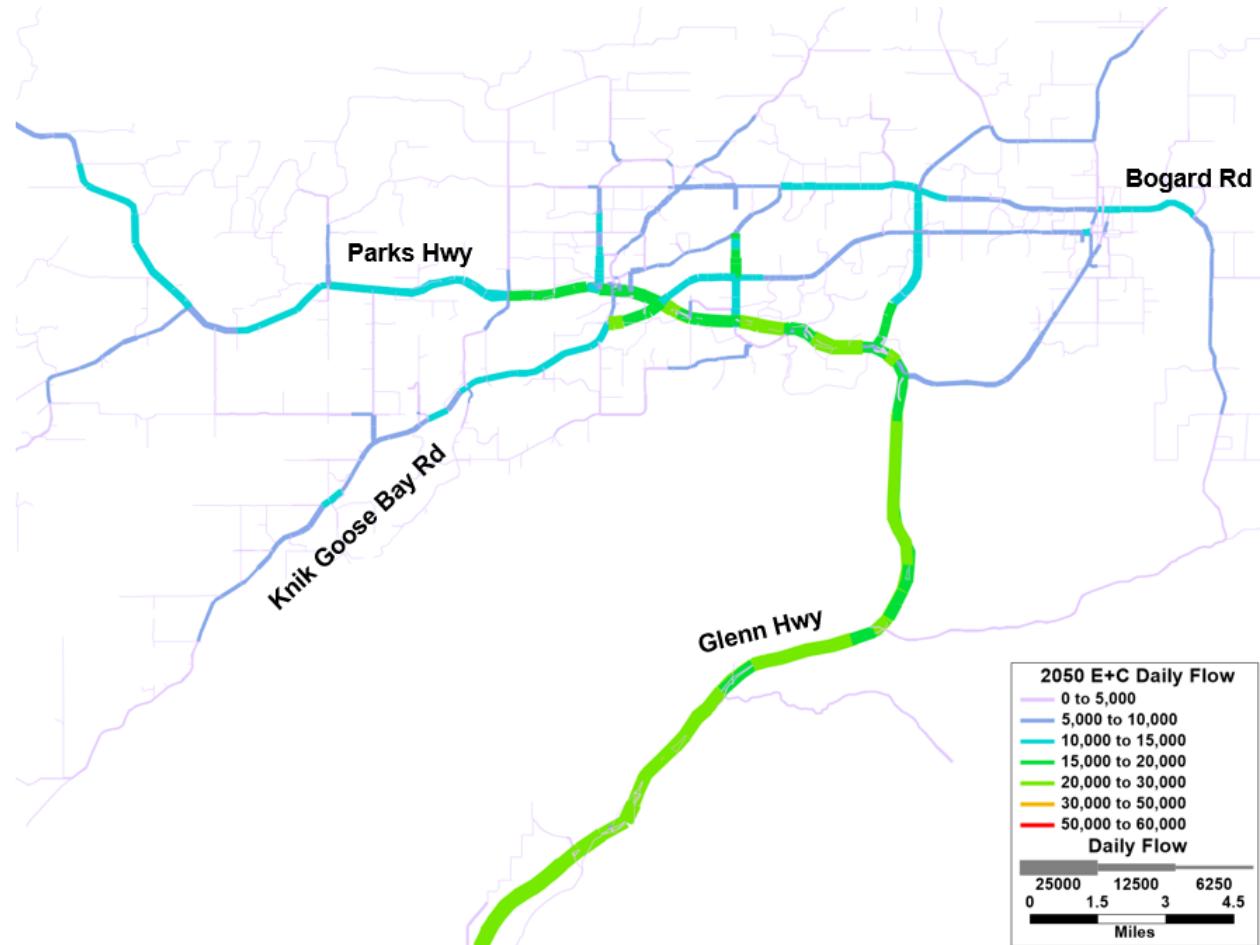
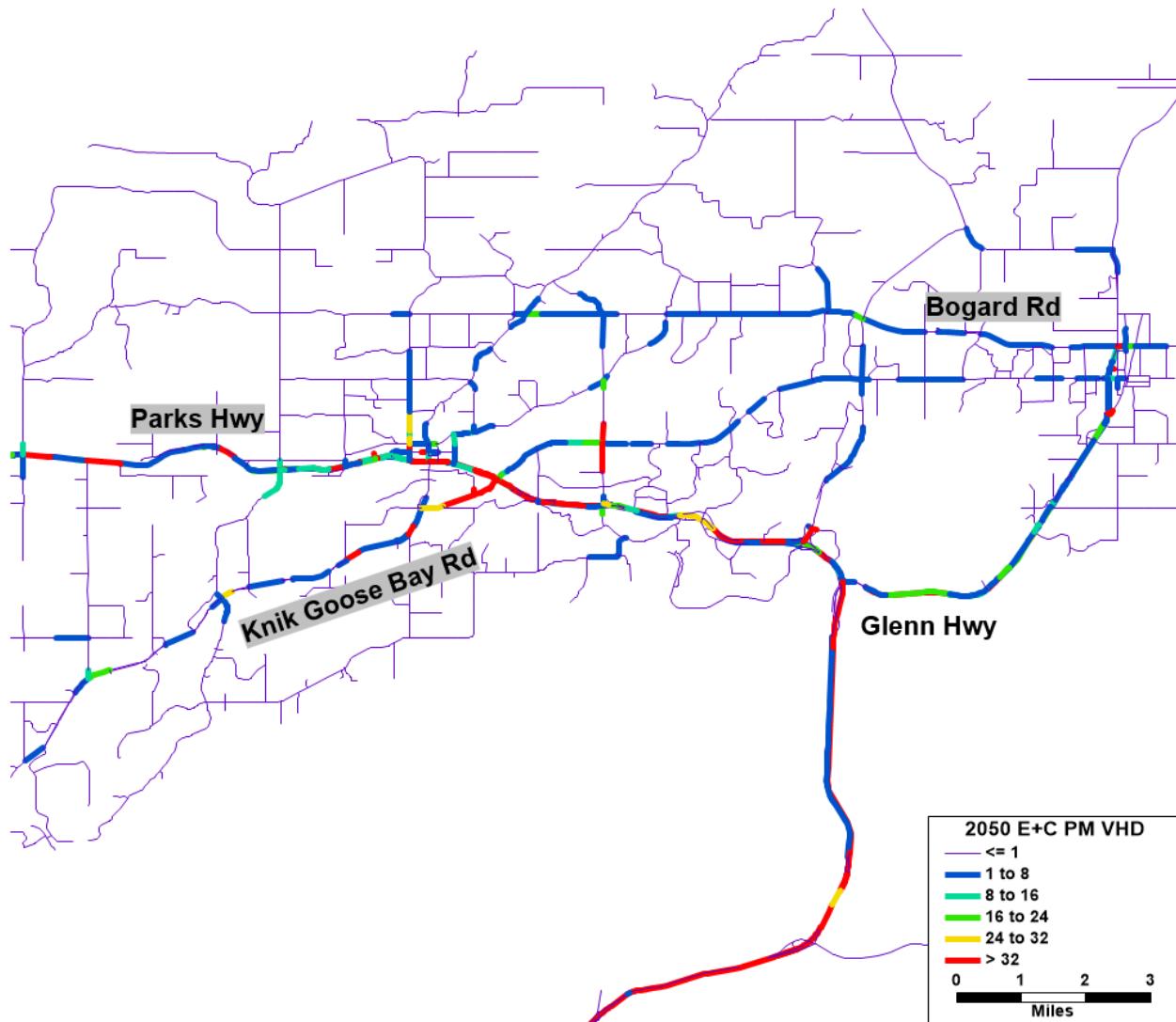



FIGURE 36: 2050 BASELINE PM (3-6 PM) PERIOD VEHICLE HOURS OF DELAY

5.5 2050 BASELINE PERFORMANCE SUMMARY FOR SELECTED CORRIDORS

Table 16 shows the 2050 summary for the same link segments as in Table 11 above and shown in the map in Figure 23. The 2019 VMT, VHT, and VHD is reported here again for comparison.

TABLE 16: 2050 BASELINE FORECAST AND 2019 BASE VMT, VHT, VHD BY SEGMENT

SEGMENT	2019 VMT	2050 VMT	2019 VHT	2050 VHT	2019 VHD	2050 VHD	2019 DELAY AS % OF VHT	2050 DELAY AS % OF VHT
1. Parks Hwy between Trunk Rd and Seward Meridian Pkwy	103,854	147,378	1,610	2,297	3	15	0.2%	0.7%
2. Parks Hwy between Seward Meridian Pkwy and Palmer Wasilla Hwy	54,179	69,140	1,358	1,742	30	48	2.2%	2.8%
3. Parks Hwy between Palmer Wasilla Hwy and Lucille	45,426	55,304	1,285	1,636	49	60	3.8%	3.7%
4. Parks Hwy between Lucille and Church	52,658	65,894	1,378	1,723	27	39	2.0%	2.3%
5. Parks Hwy between Church and Pittman	94,054	116,742	1,894	2,349	16	17	0.8%	0.7%
6. Parks Hwy between Pittman and Big Lake	49,876	72,705	1,012	1,478	3	6	0.3%	0.4%
7. Glenn Hwy between Parks and Inner Springer	58,946	60,459	1,154	1,261	32	17	2.8%	1.3%
8. Glenn Hwy between Inner Springer and Bogard/Arctic	35,306	38,060	827	940	13	9	1.6%	1.0%
9. Palmer-Wasilla Hwy between Parks and Seward Meridian	26,636	22,211	880	696	51	5	5.8%	0.7%

2050 MVP MPO TRAVEL DEMAND MODEL REPORT

Segment	2019 VMT	2050 VMT	2019 VHT	2050 VHT	2019 VHD	2050 VHD	2019 Delay as % of VHT	2050 Delay as % of VHT
10. Palmer-Wasilla Hwy between Seward-Meridian and Trunk	37,055	40,785	902	1,019	6	2	0.7%	0.2%
11. Palmer-Wasilla Hwy between Trunk and Glenn Hwy	28,747	29,459	782	799	4	3	0.5%	0.4%
12. Seldon between Church and Lucille	5,526	8,083	166	243	0	0	0.0%	0.0%
13. Seldon between Lucille and Wasilla-Fishhook	4,250	7,027	127	213	0	0	0.0%	0.0%
14. Seldon between Wasilla-Fishhook and Bogard	12,513	17,390	389	540	1	2	0.3%	0.4%
15. Bogard Rd between Wasilla-Fishhook and Seward-Meridian	19,040	19,565	568	597	2	2	0.4%	0.3%
16. Bogard Rd between Seward-Meridian and Seldon/Bogard	12,954	11,745	302	274	2	0	0.7%	0.0%
17. Bogard Rd between Seldon and Trunk	30,211	37,717	782	979	3	5	0.4%	0.5%
18. Bogard Rd between Trunk and Glenn Hwy	30,950	37,989	755	921	1	2	0.1%	0.2%
19. Knik Goose Bay Rd between Parks Hwy and Palmer-Wasilla	7,297	4,943	318	211	2	0	0.6%	0.0%
Segment	2019 VMT	2050 VMT	2019 VHT	2050 VHT	2019 VHD	2050 VHD	2019 Delay	2050 Delay

							as % of VHT	as % of VHT
20. Knik Goose Bay Rd between Palmer-Wasilla and Fairview Loop	55,572	76,636	1,133	1,562	3	8	0.3%	0.5%
21. Trunk Rd between Parks Hwy and Palmer-Wasilla	18,591	28,848	418	657	8	22	1.9%	3.3%
22. Trunk Rd between Palmer-Wasilla and Bogard	7,361	10,371	147	206	0	0	0.0%	0.0%
23. Trunk Rd between Bogard and Palmer-Fishhook	10,727	15,603	195	284	0	0	0.0%	0.0%

5.6 2050 BASELINE CONCLUSIONS

Overall, the 2050 baseline scenario demonstrates that the planned roadway network is mostly capable of handling increased demand from growing population and increased employment in the Mat-Su Borough. Projects expanding capacity on the Glenn Highway perform well in the 2050 baseline scenario. However, some segments of the Parks Highway that are congested in the base year 2019 scenario will experience added demand and congestion in the future.

5.7 2050 BUILD SCENARIOS

The 2050 Build scenario has yet to be developed. This section of the report will be updated at a later date.

THE STATE
of **ALASKA**
GOVERNOR MIKE DUNLEAVY

**Department of Transportation
and Public Facilities**

OFFICE OF THE COMMISSIONER
Ryan Anderson, P.E., Commissioner

PO Box 112500
Juneau, Alaska 99811-2500
Main: 907.465.3900
dot.alaska.gov

Susan Fletcher, P.E.
Regional Administrator
Federal Transit Administration, Region 10
915 Second Avenue, Suite 3142
Seattle, WA 98174-1002

Dear Administrator Fletcher,

This letter is to provide formal notification to FTA on the distribution of the Section 5307 Small Urban Apportionment for FY 2024 in the Wasilla - Knik - Fairview - North Lakes (WKFNL) small urban area. This is an interim decision for FY24 only, and DOT&PF will develop and issue a formal statewide policy for allocating future years' apportionment of 5307 program funds in small urban areas, including treatment of eligible rail providers. Future split letters will be issued consistently with this policy.

For FY24, FTA Section 5307 Alaska DOT&PF hereby authorizes the following agency to apply directly to FTA for the funding listed within the WKFNL small urban area.

Agency	FY2024	Total Funds
Matanuska Susitna Borough	\$1,845,938	\$1,845,938
Alaska Railroad Corporation	\$0	\$0
Total Annual Allocation	\$1,845,938	\$1,845,938

If you have any questions, please contact Julius Adolfsson at (907)-465-6978 or at julius.adolfsson@alaska.gov

Signed by:

3BFC855630834FF...

12/16/2025

Alaska DOT&PF Commissioner Ryan Anderson

ALASKA RAILROAD CORPORATION

December 10, 2025

MEMORANDUM

To: Commissioner Ryan Anderson

Cc: Bill O' Leary, Michelle Maddox, Christina Isabelle

From: Brian Lindamood
Chief Engineer

Subject: Proposed Formulaic Calculation of the Split for Direct Recipients of FTA 5307 funds for small MPO's

The Alaska Railroad Corporation (ARRC) is a direct recipient of Federal Transit Administration (FTA) 5307 funds for regularly scheduled year-round public passenger service. ARRC is dependent upon these funds to continue to make necessary capital investments in our fixed and mobile infrastructure to ensure the safety and viability of service. The amount of annual 5307 funds available is calculated by FTA in two ways depending upon the size of the Metropolitan Planning Organization (MPO).

For large MPO's (population over 200,000), the apportionments are calculated by FTA substantially upon Direct Route Mileage (DRM) maintained by the National Transit Database (NTD). The "split" between the Direct Recipients, is established by a letter signed by the Direct Recipients within the MPO, directing the FTA what portion of 5307 funds is to be allocated to each Direct Recipient ("Split Letter"). Typically, the mileage used for these calculations is within the MPO's boundary.

However, ARRC receives additional formula funds for providing year-round, regularly scheduled, fixed-guideway passenger service between Seward, Whittier, Anchorage, and Fairbanks. This additional mileage, calculated at 27% of DRM outside any MPO boundary, is added to ARRC's contribution to the Anchorage MPO (AMATS)¹. ARRC has long insisted, and it has been standard practice, for the Split Letter for 5307 funds in AMATS to be based upon the dollars "earned" by the respective Direct Recipients because the amount of 5307 funds that ARRC receives through AMATS is substantially generated through passenger rail operations outside the AMATS boundary.

¹ 49 United States Code 5336(b)(2)(E)

For small MPO's (under 200,000 people), FTA uses a population-based formula, allocated at the state level, from which it is impossible to calculate a "split" between different transit provider's contributions to the 5307 funds distributed to a specific MPO. FTA uses an Apportionment Letter from ADOT&PF Commissioner's Office to distribute all state small MPO 5307 funds between the small MPOs, and further incorporates a Split Letter generated by ADOT&PF distributing funding between Direct Recipients in those small MPOs. The difference is that the Split Letter for small MPOs comes directly from the Commissioner's Office, not a joint letter from the Direct Recipients from within a large MPO.

Until 2024, the only small MPO within which ARRC operated passenger service was Fairbanks (FAST). The route mileage attributable to ARRC within the FAST boundary pales in comparison to the Fairbanks transit provider, and for this reason, ARRC has not attempted to recoup any of these funds in the past, outside of special circumstances. The creation of the Mat-Su Valley MPO (MVP) has resulted in a larger portion of ARRC route miles being shifted from AMATS to MVP, and a subsequent amount of 5307 funding that ARRC received through AMATS will now have to come through the smaller MPOs.

Due to this shift in funding distribution, ARRC has been actively working to address this issue to both recover critical capital funds needed for the railroad's state of good repair, and that the solution needs to be applied evenly to both small MPO's (and future ones as they develop). Further, it is critical for this process to be standardized and predictable such that each entity can reasonably plan for future funding without time-consuming negotiations on an annual basis.

ARRC is respectfully requesting that, for 2024, 2025, and all future years, the "Split Letter" submitted by ADOT&PF to FTA for the distribution of 5307 funds to Direct Recipients in small MPOs be based upon the formulaic approach outlined below. The result would be that ARRC would be "made whole" for the 5307 funds we have historically received through AMATS that are no longer in the AMATS 5307 split calculation.

Route Miles, from NTD, used by FTA, by MPO:

MPO	NTD DRM
AMATS, within boundary	40.2
AMATS, outside boundary	891.4
MVP	20.4
FAST	8.0

For 2024, the calculations would be as follows:

The value of the route mile in the small MPOs is based upon the value of the route mile in AMATS. From FTA Region 10, the ARRC split of 5307 in AMATS is \$14,995,962.00². The calculation of 5307 funding per route-mile is:

$$\$14,995,962.00 \div (40.2 \text{ miles} + 27\% \times 891.4 \text{ miles}) = \$53,389.59$$

The apportionment for each small MPO then becomes 27% of the DRM within each small MPO boundary, multiplied by the AMATS 5307 apportionment per DRM. This represents what ARRC would receive through AMATS if the DRM in the small MPOs had remained outside of any MPO boundary.

MPO	Route Miles	27% of NTD DRM	2024 ARRC 5307 Share
MVP	20.4	5.5	\$293,642.75
FAST	8.0	2.2	\$117,457.10

For 2025 (NTD DRM remain unchanged):

From FTA Region 10, the ARRC split of 5307 in AMATS is \$15,342,576.00³. The calculation of 5307 funding per route-mile is:

$$\$15,342,576.00 \div (40.2 \text{ miles} + 27\% \times 891.4 \text{ miles}) = \$54,584.76$$

MPO	Route Miles	27% of NTD DRM	2025 ARRC 5307 Share
MVP	20.4	5.5	\$300,216.20
FAST	8.0	2.2	\$120,086.48

² FTA Apportionment Table 3 with supplementary split table from FTA Region 10 used for AMATS 2024 Split Letter.

³ FTA Apportionment Table 3 with supplementary split table from FTA Region 10 used for AMATS 2025 Split Letter.

Technical Committee Membership Application

Purpose: The Technical Committee is a 16-member advisory body that assists the Policy Board in fulfilling its oversight responsibilities on transportation issues that are primarily technical in nature. The Committee consists of 13 identified seats from member agencies and regional organizations, plus 3 at-large seats.

ATTENDANCE REQUIREMENTS

- Monthly meetings: 2nd Tuesday of each month, 2:00–4:00 PM
- Members are expected to notify the Executive Director when unable to attend
- Three (3) consistent unexcused absences may result in removal from the committee

CONTACT INFORMATION

Name:

Address:

Phone:

Email:

AT-LARGE SEAT OF INTEREST

Select one of the following currently available positions:

- Nonmotorized/Mobility Advocate* – A professional involved in some aspect of non-motorized trail development, maintenance, and/or advocacy
- Public Transportation Provider* – A professional involved in some aspect of public transit service provision and/or advocacy

Visit www.mvpmpo.com

Policy Board Members

Bob Charles, Knik Tribe • Mayor Edna DeVries, MSB • Mayor Glenda Ledford, City of Wasilla
• Brian Winnestaffer, Chickaloon Native Village • Mike Brown, MSB • Sean Holland, DOT&PP¹⁸⁷
• Mayor Jim Cooper, City of Palmer

APPLICATION QUESTIONS

1. Can you commit to attending meetings on the second Tuesday of each month from 2:00-4:00 PM?

Yes No

2. Would you be able to attend occasional additional daytime meetings as required? (Note: approx. 1-2 additional meetings/ workshops per quarter)

Yes No

Please elaborate:

3. What is your knowledge of the function of a Metropolitan Planning Organization?

4. Please describe why you are interested in becoming a member of the MVP for Transportation Technical Committee and your relevant education/experience in planning, engineering, or other technical fields as they relate to transportation planning. (*You may also attach a separate letter of interest to this application.*)

Visit www.mvpmpo.com

Policy Board Members

Bob Charles, Knik Tribe • Mayor Edna DeVries, MSB • Mayor Glenda Ledford, City of Wasilla
• Brian Winnestaffer, Chickaloon Native Village • Mike Brown, MSB • Sean Holland, DOT&PP¹⁸⁸
• Mayor Jim Cooper, City of Palmer

REQUIRED ATTACHMENTS

- Resume or CV: Please attach a current copy of your resume
- Letter of Interest (Optional): Additional information about your qualifications and interest

APPLICATION PROCESS

At-Large member applications are reviewed and appointed by the Policy Board. Please submit your completed application with all required attachments to:

- Kim Sollien - MVP Executive Director
 - o Kim.Sollien@mvpmpo.com

Thank you for your interest in becoming a member of MVP's Technical Committee!

We appreciate your commitment to improving transportation planning in the Mat-Su Valley.

Visit www.mvpmpo.com

Policy Board Members

Bob Charles, Knik Tribe • Mayor Edna DeVries, MSB • Mayor Glenda Ledford, City of Wasilla
• Brian Winnestaffer, Chickaloon Native Village • Mike Brown, MSB • Sean Holland, DOT&PF¹⁸⁹
• Mayor Jim Cooper, City of Palmer

THE STATE
of **ALASKA**
GOVERNOR MIKE DUNLEAVY

Department of Transportation and Public Facilities

Project Delivery

P. O. Box 112500
3132 Channel Drive
Juneau, Alaska 99811-2500
Main: 907-465-6958
Fax: 907-465-2460
dot.alaska.gov

December 10, 2025

Ben White
4111 Aviation Ave.
Anchorage, AK 99519

Kim Sollen and MVP Policy Board,

During the October Policy Board meeting it was requested that the Department write a letter providing information as to how federal funds sub-allocated for projects within the Mat-Su Valley Planning for Transportation (MVP), Metropolitan Planning Area are programmed. The Policy Board expressed concern regarding communication breakdowns between the Department and MVP when programming projects that utilize MVP sub-allocations, and there was also an interest in getting an official accounting of funding available to MVP in FFY26.

I reached out to our Project Management and Administration Division for some assistance. A summary of this information is provided in Table 1 below. I have also provided you with more a detailed accounting of suballocated federal funds that was shared from Project Management and Administration which includes an accounting of anticipated “Carry Forward” and funding for FFY26. I believe these funding amounts meet or exceed MVP expectations of funding in FFY26

Our team will strive to do a better job in communicating and coordinating federal programming within the MPO boundary going forward. We will make every effort to communicate and coordinate all planned obligations of MVP sub-allocated funding prior to obligation. Our Fed-Aid group has implemented new systems for tracking MPO projects, which were not in place in FFY24 and FFY25 and should greatly improve our communication related to funding obligations within MVP. I would also recommend that we add this as a reoccurring topic at our Quarterly MPO meetings so that the MPOs and the Department are regularly coordinating on programming throughout the year. For case-by-case situations, we will work with you and MVP staff to develop proposals for the Policy Board for their concurrence.

Ultimately, we should explore options to memorialize our expectations on communication and coordination. Documenting this process would allow us to affirm the commitment by the Department to work with the MPO on funding changes. This would include process for addressing funding that is not programmed and how it would be made available at a later date. This would allow the MPO and Department to review, discuss and approve a process that works for all parties.

STBG 50-200K	
FY26 Estimated Allocation	7,023,041.72
STBG 50-200K Carry Forward	4,963,029.61
TIFIA Redist FY25 Apportionment	855,529.17
Total STBG FY26 Allocation	
	12,841,600.50
CRP 50-200K	
FY26 Estimated Allocation	806,690.69
Carry Forward	1,950,260.55
Total CRP 50-200K FY26 Allocation	
	2,756,951.23
TAP 50-200K	
FY26 Estimated Allocation	448,153.92
Carry Forward	426,116.05
TIFIA Redist FY25 Apportionment	61,760.70
Total TAP 50-200K FY26 Allocation	
	936,030.67

Table 1. Federal funding details.

I am confident that as we develop our Metropolitan Transportation Plan (MTP) and establish our Transportation Improvement Plan (TIP) – and improve our coordination on the programming of federal funding – that fund allocation and management will be easier to manage going forward.

Sincerely,

Ben White
Urban Planning Chief

Cc: Adam Bradway, ADOT&PF, MVP Planning Coordinator
Chris Bentz, ADOT&PF, MDO Chief
Judy Chapman, ADOT&PF, Deputy Director Project Delivery

THE STATE
of **ALASKA**
GOVERNOR MIKE DUNLEAVY

Department of Transportation and
Public Facilities

OFFICE OF THE COMMISSIONER
Ryan Anderson, P.E., Commissioner

PO Box 112500
Juneau, Alaska 99811-2500
Main: 907.465.3900
dot.alaska.gov

December 17, 2025

Anchorage Metropolitan Area Transportation Solutions (AMATS)
Fairbanks Area Surface Transportation (FAST)
Matanuska-Susitna Valley Metropolitan Planning Organization (MVP)
Federal Highway Administration
DOT&PF Staff

Subject: Approval of FFY 2026 Highway Safety Improvement Program (HSIP) Funding Plan

State, Federal, and Community Partners,

The Alaska Department of Transportation & Public Facilities (DOT&PF) has approved the Federal Fiscal Year (FFY) 2026 Highway Safety Improvement Program (HSIP) Funding Plan. We appreciate the work of Metropolitan Planning Organizations, local governments, and stakeholders in identifying safety needs and advancing projects for consideration. The approved plan reflects HSIP's core purpose: advancing data-driven investments that reduce fatal and serious injury crashes across Alaska's transportation system.

As part of this year's review, DOT&PF did not advance projects whose primary scope involved lane reductions or roadway reconfigurations that reduce general-purpose travel lanes. This decision is not a determination about the potential safety benefits of lane reductions in general. Rather, DOT&PF has recently adopted a Chief Engineer's Directive that establishes a consistent, statewide framework for evaluating lane reductions and road diets on state-owned facilities. Until the corridor-level, operational, safety, maintenance, and, where appropriate, systemwide analyses required by that directive are completed, it would not be appropriate to include projects with these specific scopes in the HSIP funding plan.

Lane reductions can also have impacts beyond a single location, including effects on traffic flow, emergency response, freight movement, and adjacent corridors. For that reason, DOT&PF believes these decisions are best informed through coordinated corridor or system-level planning rather than addressed on a one-off basis through HSIP. DOT&PF remains committed to improving safety for all road users and looks forward to continued collaboration with MPOs, local governments, and stakeholders as data-driven planning and analysis informs future project development.

Sincerely,

Ryan Anderson, P.E.
Commissioner
Alaska Department of Transportation & Public Facilities

Cc:

Kim Sollien, MPO Executive Director
Aaron Jongenelen, AMATS Planning Executive Director
Jackson Fox, FAST Planning Executive Director
Randy Warden, Division Administrator, FHWA
Emily Haynes, Acting Deputy Division Administrator, FHWA
Katherine Keith, Deputy Commissioner
Chris Goins, P.E., Southcoast Regional Director
Sean Holland, P.E., Central Region Regional Director
Dom Pannone, Program Management & Administration Director
Lauren Little, P.E., Chief Engineer, Statewide
Luke Bowland, P.E., Preconstruction Engineer, Central Region
Kirk Miller, P.E., Preconstruction Engineer, Southcoast Region
Al Beck, P.E., Preconstruction Engineer, Northern Region
Adam Moser, Program Development Manager, Statewide
Nathan Purves, P.E., Traffic & Safety Engineer, Southcoast Region
Nathan Stephan, P.E., Traffic & Safety Engineer, Northern Region
Anna Bosin, Traffic & Safety Engineer, Central Region
Ben White, Planning Chief, Anchorage Field Office
Brett Nelson, Planning Chief, Fairbanks Field Office
Jill Melcher, Planning Chief, Juneau Field Office
Christine Langley, Division Director, Data Modernization & Innovation Office
Pamela Golden, State Traffic and Safety Engineer
Sarah Riopelle, Acting Roadway Safety Engineer

MEMORANDUM

State of Alaska

Department of Transportation & Public Facilities
Data Modernization & Innovation Office

TO: Ryan Anderson, P.E.
Commissioner

DATE: December 8, 2025

THRU: Katherine Keith
Deputy Commissioner

PHONE NO: (907) 615-9551

Christine Langley
Division Director, DMIO CL

Pam Golden, P.E.
State Traffic & Safety Engineer Initial PKD

FROM: Sarah Riopelle, P.E.
HSIP Engineer DS

SUBJECT: FFY26 HSIP
Funding Plan

We request approval of the FFY 2026 Highway Safety Improvement Program Funding Plan (STIP Need ID 19217). The plan represents estimated project obligations by funding source, by project phase, and by region. Available funding was assumed to be the anticipated apportionment as shown in Notice N4510.905 for HSIP and Railway-Highway Crossings Program (RHCP) Formula Program; Vulnerable Road User (VRU) Special Rule set aside; and 154 and 164 Penalty Funds. All are adjusted for carryover identified by Federal Aid. Projects were prioritized for funding using the process outlined in the HSIP Handbook.

For this funding plan, we have not specified projects by specific funding type, except for VRU special rule eligible projects and Section 130 rail projects. This is intended to provide flexibility to assign 154 and 164 funding first. With respect to August Redistribution, this funding plan serves as a snapshot demonstrating a path to meeting all obligations. The PDP and PDA processes will be used to assign 154, 164, or 148 funding at the time of the request. We request signature of the funding plan to initiate HSIP funding for projects.

Your signature below will enable the regions to start projects.

Ryan Anderson, P.E., Commissioner

12/17/2025

Date

Attachments:

- Summary of Proposed and Selected Project Funding by Region, with Estimate of Available Funding
- Northern Region FFY 2026 HSIP project listing
- Central Region FFY 2026 HSIP project listing
- Southcoast Region FFY 2026 HSIP project listing
- Statewide FFY26 HSIP project listing
- Funding Priority and Project Ranking
- HSIP Criteria Matrix

Alaska HSIP Funding FFY '26 - '28: **Proposed** by Regions

	Entire Department			Northern			Central			Southcoast			Statewide			
	2026	2027	2028	2026	2027	2028	2026	2027	2028	2026	2027	2028	2026	2027	2028	
Type	New:	\$ 4,326,600	\$ 16,130,600	\$ 19,860,000	\$ 642,100	\$ 1,016,200	\$ 270,000	\$ 1,984,500	\$ 14,472,400	\$ 19,590,000	\$ 200,000	\$ 642,000	\$ -	\$ 1,500,000	\$ -	\$ -
	Funded Old:	\$ 88,215,833	\$ 64,331,133	\$ 59,234,000	\$ 19,046,149	\$ 17,680,000	\$ 3,609,000	\$ 60,756,600	\$ 33,184,000	\$ 48,625,000	\$ 8,413,084	\$ 11,467,133	\$ -	\$ -	\$ 2,000,000	\$ 7,000,000
	Unfunded Old:	\$ 1,882,000	\$ 3,859,000	\$ 12,491,000	\$ -	\$ -	\$ -	\$ 1,882,000	\$ 3,859,000	\$ 12,491,000	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
	Total:	\$ 94,424,433	\$ 84,320,733	\$ 91,585,000	\$ 19,688,249	\$ 18,696,200	\$ 3,879,000	\$ 64,623,100	\$ 51,515,400	\$ 80,706,000	\$ 8,613,084	\$ 12,109,133	\$ -	\$ 1,500,000	\$ 2,000,000	\$ 7,000,000

Alaska HSIP Funding FFY '26: **Selected** by Statewide

		Entire Department		Northern	Central	Southcoast	Statewide
		2026 Available	2026	2026	2026	2026	2026
		(Fed + SM) - ACC + AC	Selected				
Type	New:		\$ 3,191,600	\$ 642,100	\$ 849,500	\$ 200,000	\$ 1,500,000
	Funded Old:		\$ 72,151,833	\$ 19,046,149	\$ 44,692,600	\$ 8,413,084	\$ -
	Unfunded Old:		\$ -	\$ -	\$ -	\$ -	\$ -
	Total:		\$ 75,343,433	\$ 19,688,249	\$ 45,542,100	\$ 8,613,084	\$ 1,500,000
Funding	S120 (Increased Fed)		\$ -	\$ -	\$ -	\$ -	\$ -
	S130 (Railroad)	\$ 1,225,000	\$ 499,958	\$ 373,058	\$ 126,900	\$ -	\$ -
	S148 (UnCat HSIP Funds)	\$ 72,189,787	\$ 69,975,475	\$ 18,745,191	\$ 41,548,200	\$ 8,182,084	\$ 1,500,000
	S154 (Penalty)		\$ -	\$ -	\$ -	\$ -	\$ -
	S164 (Penalty)		\$ -	\$ -	\$ -	\$ -	\$ -
	HRRR (Special Rule)		\$ -	\$ -	\$ -	\$ -	\$ -
	SSP		\$ -	\$ -	\$ -	\$ -	\$ -
	VRU (Special Rule)	\$ 6,494,469	\$ 4,868,000	\$ 570,000	\$ 3,867,000	\$ 431,000	\$ -
	Advance Construction		\$ -	\$ -	\$ -	\$ -	\$ -
Phase	A/C Conversion (VRU)	\$ (1,913,937)	\$ -				
	Total:	\$ 77,995,320	\$ 75,343,433	\$ 19,688,249	\$ 45,542,100	\$ 8,613,084	\$ 1,500,000
	0		\$ 2,100,000	\$ -	\$ 600,000	\$ -	\$ 1,500,000
	2		\$ 5,020,200	\$ 1,550,500	\$ 2,974,700	\$ 495,000	\$ -
	3		\$ 1,740,000	\$ -	\$ 1,500,000	\$ 240,000	\$ -
	4		\$ 60,285,875	\$ 16,606,791	\$ 36,011,000	\$ 7,668,084	\$ -
	7		\$ 6,197,358	\$ 1,530,958	\$ 4,456,400	\$ 210,000	\$ -
Unselected / Not Funded Projects:	8		\$ -	\$ -	\$ -	\$ -	\$ -
	9		\$ -	\$ -	\$ -	\$ -	\$ -
	Total:		\$ 75,343,433	\$ 19,688,249	\$ 45,542,100	\$ 8,613,084	\$ 1,500,000

Alaska HSIP Funding FFY '26 within MPO Boundaries					
Proposed	2026	All MPOs	FAST (NR)	AMATS (CR)	MVP (CR)
	In MPO Boundary:	\$ 70,319,055	\$ 19,626,855	\$ 28,161,500	\$ 22,530,700
Selected by Statewide					
Type	New:	\$ 1,962,500	\$ 1,500,000	\$ 462,500	\$ 20,300
	Funded Old:	\$ 49,624,255	\$ 18,126,855	\$ 8,987,000	\$ 22,510,400
	Unfunded Old:	\$ -	\$ -	\$ -	\$ -
	Total:	\$ 51,607,055	\$ 19,626,855	\$ 9,449,500	\$ 22,530,700
Funding	S120 (Increased Fed)	\$ -	\$ -	\$ -	\$ -
	S130 (Railroad)	\$ 112,500	\$ -	\$ 101,500	\$ 11,000
	S148 (UnCat HSIP Funds)	\$ 47,559,527	\$ 19,558,827	\$ 5,481,000	\$ 22,519,700
	S154 (Penalty)	\$ -	\$ -	\$ -	\$ -
	S164 (Penalty)	\$ -	\$ -	\$ -	\$ -
	HRRR	\$ -	\$ -	\$ -	\$ -
	SSP	\$ -	\$ -	\$ -	\$ -
	VRU	\$ 3,935,028	\$ 68,028	\$ 3,867,000	\$ -
	Advance Construction	\$ -	\$ -	\$ -	\$ -
Unfunded / Not Selected by Statewide					
Unfunded:		\$ -	\$ -	\$ -	\$ -
Not Selected:		\$ 18,712,000	\$ -	\$ 18,712,000	\$ -
Total:		\$ 18,712,000			

FFY 2026 Approved HSIP Projects - Northern Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment		
						PDO	POS	MIN	MJR	FAT			26	27	28								
													26	27	28								
HSIP: Northern Region Systemic Signal Upgrades	Funded Old	NFHWY00531	20NR02	0.51	N/A	40	N/A	13	0	0	N	0				Yes, with NFHWY01098, 21NR02	FAST	FAST	SYSTEMIC Install overhead signal head for each lane of each approach at 8 intersections around Northern Region. Install retroreflective backplates on all signal heads. Upgrade advance warning flashers in McKinley Village.				
												2											
												3											
												4	\$ 1,620,213										
												7											
												8											
												9											
												Total	\$ 1,620,213	\$ -	\$ -								
												0											
												2											
HSIP: City of Fairbanks Systemic Signal Upgrades	Funded Old	NFHWY00592	21NR02	1.05	varies	144	N/A	43	6	0	N	0				No	FAST	FAST	SYSTEMIC Install overhead signal head for each lane of each approach at 15 intersections around City of Fairbanks. Install retroreflective backplates on all signal heads and at 15 additional locations.	NFHWY00592 has multiple construction packages. The first spinoff built all the easy intersection improvements with no ROW impacts. The spinoff NFHWY001098 will construct all the remaining intersection except those on Barnette St. All design efforts are paid for under NFHWY00592. The Barnette street intersection will be the last construction package and will close out NFHWY00592.			
												2											
												3											
												4		\$ 4,970,000									
												7											
												8											
												9											
												Total	\$ -	\$ 4,970,000	\$ -								
												0				Yes, with NFHWY01098, 20NR02	FAST	No	SYSTEMIC Install overhead signal head for each lane of each approach at 15 intersections around City of Fairbanks. Install retroreflective backplates on all signal heads and at 15 additional locations.	NFHWY00592 has multiple construction packages. The first spinoff built all the easy intersection improvements with no ROW impacts. The spinoff NFHWY001098 will construct all the remaining intersection except those on Barnette St. All design efforts are paid for under NFHWY00592. The Barnette street intersection will be the last construction package and will close out NFHWY00592. Will coordinate with Randi Bailey to ensure this gets into the TIP once Funding plan is finalized and approved.			
												2											
												3											
												4	\$ 5,860,000										
												7											
												8											
												9											
												Total	\$ 5,860,000	\$ -	\$ -								
Parks Highway/Sheep Creek Road Extension Traffic Signal (HSIP)	Funded Old	NFHWY00898	23NR01	0.66	N/C	6	0	2	1	0	N	0				Yes, with NFHWY01092 & NFHWY01103 & NFHWY01109 (project hasn't been started yet)	FAST	FAST	Construct a continuous green T signal on the Parks Highway at the intersection with Sheep Creek Extension.				
												2	\$ 470,000										
												3											
												4	\$ 9,126,578										
												7	\$ 300,000										
												8											
												9											
												Total	\$ 9,896,578	\$ -	\$ -								
												0											
												2	\$ 188,400										
HSIP: Murphy Dome Road MP 0-2 Rehabilitation	Funded Old	NFHWY00818	23NR02	0.3	N/A	7	0	0	0	1	N	0				No	N/A	FALSE	Widen Murphy Dome Rd from Goldstream Rd/Sheep Creek Rd to Spinach Creek Rd to provide 6' shoulders.	ph7 \$200k is a wag, not sure about the extent of utility impacts - \$500k would be more reasonable			
												2											
												3		\$ 100,000									
												4			\$ 3,609,000								

FFY 2026 Approved HSIP Projects - Northern Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment									
						PDO	POS	MIN	MJR	FAT			26																	
													26	27	28															
Richardson Highway MP 341-362 Variable Speed Limit	Funded Old	NFHWY00949	24NR02	2.26	N/A	133	30	27	2	0	N	0	\$ 180,000	\$ 5,200,000	\$ 200,000	Q2	Yes, bundled with Seward Highway MP 90-118, but all under NFHWY00949. AMATS and FAST funding is broken out from one another.	FAST	FAST	Install variable speed limit (VSL) signs on the Richardson Highway MP 341-362. Work includes installing VSL signs at key locations, integrating real-time road weather and traffic data from RWIS and count stations, and establishing operational protocols in coordination with law enforcement and maintenance teams.	Project is managed by Statewide. For amount in FAST, used old FAST boundary that is recognized by the Governor. MP 346-362 are within the official FAST boundary (17 miles of the 22 total project miles).									
Parks Highway MP 168 Hurricane Railroad Crossing Upgrades (HSIP)	Funded Old	NFHWY00954	24NN01	N/C	N/A	0	0	0	0	0	N	0	\$ 330,958	\$ -	\$ -	Q2	No	N/A	FALSE	Install new ties, new concrete panels, and rail for Hurricane crossing to bring it back within ARRC standards. Also included is the installation of a new solar array, battery bank, and generator which powers the systems at this crossing.	Project obligated 6/12/2025									
Northern Region Accessible Pedestrian Signal Upgrades (HSIP)	Funded Old	NFHWY01058	25NN01	N/C	N/A	0	0	0	0	0	N	0	\$ 70,000	\$ 893,000	\$ -	Q2	No	FAST	FAST	SYSTEMIC Install new pedestrian pushbuttons at state-owned crosswalks across Northern Region.										
Parks Highway Guardrail End Terminal Upgrades	New	pend	26NN01	N/C	N/A	0	0	0	0	0	N	0	\$ 600,000	\$ 270,000	\$ -	Q1	No	N/A	FALSE	Install MASH TL-3 guardrail end terminals along the NR portion of the Parks Highway.										
Sheep Creek Road (Happy) Railroad Crossing Surface Upgrade	New	pend	26NN02	N/C	N/A	0	0	0	0	0	N	0	\$ 42,100	\$ 1,016,200	\$ -	Q1	No													

0	\$ -	\$ -	\$ -
2	\$ 1,550,500	\$ -	\$ 270,000
3	\$ -	\$ 100,000	\$ -
4	\$ 16,606,791	\$ 17,580,000	\$ 3,609,000
7	\$ 1,530,958	\$ 1,016,200	\$ -
8	\$ -	\$ -	\$ -
9	\$ -	\$ -	\$ -
Total	\$ 19,688,249	\$ 18,696,200	\$ 3,879,000

FFY 2026 Approved HSIP Projects - Central Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment
						PDO	POS	MIN	MJR	FAT			26	27	28						
Sterling Highway Shoulder Widening MP 157-169	Funded Old	Z581060000	14CR02	0.4	N/A	20	N/A	14	3	1	C	0				Yes, with Z581060000 Sterling Hwy: MP 157-169 Reconst. - Anchor Pt to Baycrest Hill	N/A	FALSE	Widen shoulders on Sterling Highway from 4' to 8' between Mile Posts 157-169. Project is part of larger 3R project currently in design. Project includes shoulder rumble strips.	0	
													2								
													3								
													4	\$ 10,800,000							
													7								
													8								
													9								
													Total	\$ 10,800,000	\$ -	\$ -					
													0								
													2								
Bogard Rd at Engstrom Rd / Green Forest Dr Intersection Improvements	Funded Old	CFHWY00453	18CR01	0.61	0.85 and 0.40	8	N/A	5	1	0	C	0				No	MVP	No	Realign Green Forest Drive at Bogard Road to create one intersection with Engstrom Road with four approaches. Construct a single lane roundabout at the new intersection.	With newly formed MVP, the TIP is still being developed.	
													3								
													4	\$ 11,406,000							
													7	\$ 3,872,000							
													8								
													9								
													Total	\$ 15,278,000	\$ -	\$ -					
													0								
													2	\$ 100,000							
													3								
Vine Rd at Hollywood Rd Intersection Improvements	Funded Old	CFHWY00463	18CR02	0.46	1.71	7	N/A	4	1	0	C	0				Possible, with Z524640000 Knik Goose Bay Rd Reconst, MP 0.3 to 6.8 Centaur Ave-Vine Rd	MVP	No	Construct a single lane roundabout at the intersection of Vine Road and Hollywood Road. Phase 3 4th quarter request	With newly formed MVP, the TIP is still being developed.	
													2	\$ 100,000							
													4	\$ 5,528,000							
													7	\$ 1,762,000							
													8								
													9								
													Total	\$ -	\$ 7,390,000	\$ -					
													0								
													2								
													3								
Gambell St Utility Pole Removal and Increased Pedestrian Lighting	Funded Old	CFHWY00502	19CR01	0.3	N/A	48	N/A	29	2	3	C	0				Yes, with CFHWY00503 HSIP: Gambell and Ingra Streets - Overhead Signal Indication Upgrades	AMATS	AMATS	Remove existing utility/lighting poles and replace with new poles/lighting that have a break away base and are further from the travel lanes.	0	
													2								
													3								
													4	\$ 6,000,000							
													7	\$ 1,000,000							
													8								
													9								
													Total	\$ 7,000,000	\$ -	\$ -					
													0								
													2	\$ 150,000							
Gambell and Ingra Streets - Overhead Signal Indication Upgrades	Funded Old	CFHWY00503	19CR02	0.36	N/A	69	N/A	26	0	0	C	0									

FFY 2026 Approved HSIP Projects - Central Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment			
						PDO	POS	MIN	MJR	FAT			26	27	28									
						0	2	3	4	7			Total	\$ 5,597,000	\$ -	\$ -								
Wasilla-Fishhook Rd and Spruce Ave/Peck St Roundabout	Funded Old	CFHWY00790	20CR03	0.72	N/A	5	N/A	6	0	0	C	0	2	3	4	7	8	9	Total	\$ 5,597,000	\$ -	\$ -	Install a single lane roundabout at the 4 leg intersection of Wasilla-Fishhook Rd and Spruce Ave/Peck St intersection.	With newly formed MVP, the TIP is still being developed.
5th Ave: Concrete St to Karluk St Pedestrian Improvements																								
Anchorage Flashing Yellow Arrow and Signal Head Display Improvements																								
Pittman Rd Shoulder Widening and Slope Flattening																								
Tudor Road: Baxter Road to Patterson Street Channelization																								
Old Seward Highway: Industry Way/120th Ave Channelization																								
Bogard Road: Greylings Street to Grumman Circle Safety Improvements																								

FFY 2026 Approved HSIP Projects - Central Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment			
						PDO	POS	MIN	MJR	FAT			26	27	28									
						0	2	3	4	7			8	9	Total	\$ 518,000	\$ -	\$ 347,000						
Bogard Road: Trunk Road to Engstrom Road Safety Improvements	Funded Old	CFHWY01234	24CR02	0.23	N/A	3	1	2	0	1	C	0	2	3	4	7	8	9	This project proposed to install continuous raised median between the Trunk Road roundabout and future Engstrom Road roundabout. Project also proposes to install separated multi-use pathway on one side of the roadway to to provide dedicated non-motorized facilities on this high-speed arterial.	With newly formed MVP, the TIP is still being developed.				
DTMF Activated Railroad Crossing Signal Upgrades	Funded Old	CFHWY01241	24CN03	N/C	N/A	0	0	0	0	0	C	0	2	3	4	7	8	9	This project proposes to improve crossing safety for ARRC on-track vehicles, equipment, and roadway traffic by installing Dual Tone Multi Frequency (DTMF) radio controlled switches to facilitate signal activation at nine grade crossings.	Did not obligate FFY25 because none of the sites could pass the RR Crossing Checklist. Pushing to FFY26, but will have to discuss with RR whether the project moves forward if it will require major fixes to the crossings.				
Northern Lights Blvd Road Diet	Unfunded Old	CFHWY01318	25CR01	30	N/A	0	158	111	17	1	C	0	2	3	4	7	8	9	Total \$ 90,000 \$ - \$ 3,890,000	Possible, with CFHWY00851 Anchorage Area Pavement Preservation Group A, which includes Northern Lights Blvd.	AMATS	AMATS	Reconfigure roadway to remove one lane (road diet) between Lake Otis Blvd and Lois Drive. Widen Sidewalk to ADA compliant standards. Consolidate driveways. Install buffered grassy area or two-way cycle track. Enhance signalized crosswalks, include 4th crossings at New Seward and Minnesota Drive crossings with signalized hardware upgrades and Leading Pedestrian Intervals. Install RRFB and raised crosswalk at Lois Dr. Install new sidewalk connection on Lois Drive from Northern Lights to Benson. Reduce speed limit to 30MPH.	0
Ingra & Gambell Couplet Lane Reconfigurations																								

FFY 2026 Approved HSIP Projects - Central Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment
						PDO	POS	MIN	MJR	FAT			26	27	28						
Vision Zero Speed Limit Compliance	Funded Old	CFHWY01366	25CN01	N/C	N/A	0	0	0	0	0	C	0	2	3	4	7	8	9	<i>Signing and striping upgrades to reinforce speed limit reductions, including retroreflective sign post striping, speed feedback signs, speed feedback carts, advance warning signs, and enhanced crosswalk markings.</i>	0	
CR Red Light Indicator Lights and Retroreflective Backplates	New	pend	26CR01	22	N/A	1184	272	278	35	8	C	0	2	3	4	7	8	9	<i>Install Red Light Indicator Lights and retroreflective backplate at 22 intersections in central region.</i>	With newly formed MVP, the TIP is still being developed.	
Regionwide Systemic Retroreflective Back Plates at Signalized Intersections	New	pend	26CR02	15.9	N/A	7590	1612	1386	160	23	C	0	2	3	4	7	8	9	<i>Install retroreflective backplate at traffic signals across central region.</i>	With newly formed MVP, the TIP is still being developed.	
Tudor Road at Wright Street and Dale Street – VRU Improvements	New	pend	26CR03	0.68	N/A	37	7	11	1	0	C	0	2	3	4	7	8	9	<i		

FFY 2026 Approved HSIP Projects - Central Region																					
Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment
						PDO	POS	MIN	MJR	FAT			26	27	28						
Ocean Dock Road 2-Track Signal System Upgrade	New	pend	26CN03	N/C	N/A	0	0	0	0	0	C	0	\$ 68,500	\$ 1,379,400	\$ -	Q2	No	AMATS	No	RR signal system upgrade	0

0	\$ 600,000	\$ 600,000	\$ 600,000
2	\$ 5,791,700	\$ 1,468,000	\$ -
3	\$ 1,700,000	\$ 527,000	\$ 2,140,000
4	\$ 50,186,000	\$ 45,477,000	\$ 73,976,000
7	\$ 5,606,400	\$ 3,443,400	\$ 3,990,000
8	\$ -	\$ -	\$ -
9	\$ 739,000	\$ -	\$ -
Total	\$ 64,623,100	\$ 51,515,400	\$ 80,706,000

FFY 2026 Approved HSIP Projects - Southcoast Region

FFY 2026 Approved HSIP Projects - Southcoast Region

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment
						PDO	POS	MIN	MJR	FAT			26	27	28						
Douglas Highway Retaining Wall and Guardrail Installation	Funded Old	SFHWY00691	25SN01	N/C	N/C	4	0	0	0	0	S	0				0	N/A	FALSE	Construct a retaining wall and guardrail along Douglas Highway near the Crow Hill Intersection.	0	
													2	\$ 20,000							
													4		\$ 667,000						
													7	\$ 10,000							
													8								
													9								
													Total	\$ 30,000	\$ 667,000	\$ -					
													0								
													2	\$ 50,000							
Harbor Drive Crosswalk and Lighting Improvements	Funded Old	SFHWY00690	25SN02	N/C	N/C	0	0	0	0	0	S	0				0	N/A	FALSE	Construct a mid block pedestrian crossing across Harbor Drive, implementing sidewalk extensions, luminaires, and signage.	0	
													2	\$ 20,000							
													4		\$ 985,000						
													7								
													8								
													9								
													Total	\$ 70,000	\$ 985,000	\$ -					
													0								
													2	\$ 95,000							
													3								
HSIP Juneau Areawide Pedestrian Improvements	Funded Old	SFHWY00694	25SN03	N/C	N/C	0	0	0	2	0	S	0				0	N/A	FALSE	Provide systemic pedestrian crossing improvements around the City and Borough of Juneau. Sites identified for improvement will be further analyzed to determine the appropriate treatment for each location.	0	
													2	\$ 95,000	\$ 1,880,000	\$ -					
													4								
													7								
													8								
													9								
													Total	\$ 200,000	\$ 642,000	\$ -					
													0								
													2	\$ 200,000	\$ 100,000						
													3								
HSIP Southcoast Region Accessible Pedestrian Signal Pushbutton Upgrades	New	pend	26SN01	N/C	N/C	2	3	12	2	3	S	0				0	N/A	FALSE	Install PROWAG compliant audible and vibrotactile pedestrian push buttons at 24 signalized intersections in SC Region.	0	
													2	\$ 495,000	\$ 100,000	\$ -					

FFY 2026 Approved HSIP Projects - Statewide (HQ)

Project Name:	Project Type	IRIS No.	HSIP Project Number	B/C	Safety Index	Crashes Susc. to Corr.					Region	Phase	Federal Fiscal Year			FFY26 Quarter	Bundle?	In MPO?	In TIP?	Project Description	Regional Response/Adjustment
						PDO	POS	MIN	MJR	FAT			26	27	28						
						0															
Rural/Remote School Zone Safety Audit Project	Funded Old	HFHWY00402	24HN01	N/C	N/A	0	0	0	0	0	H	0				0	N/A	FALSE	Multi-year project that provides immediate assessment and priority funding of Rural and Remote School Zone safety projects to produce rapid-deployment, low-cost safety improvements for children attending schools located on state highways.	0	
													\$ 1,000,000	\$ 1,000,000							
													\$ 1,000,000	\$ 1,000,000							
Numbered Highways MEDEVAC Sites	Funded Old	HFHWY00404	24HN03	N/C	N/A	0	0	0	0	0	H	0				0	N/A	FALSE	Identify, improve, and catalog MEDEVAC sites on the numbered highway system in locations with narrow roadways, insufficient pull outs, and similar issues that prevent air access.	0	
													\$ 5,000,000								
Airport Way Connected Corridor	New	pend	26HN01	N/C	N/A	0	0	0	0	0	H	0		\$ 1,500,000			0	FAST	No	Update state-owned signals on Airport Way to create a connected corridor for V2X.	All signals are DOT&PF owned and operated signals, with no COF participation. A non-construction project as defined by FHWA. Not in the FAST TIP since it is a new project, will coordinate with FAST Planning to include it if required.

0	\$ 1,500,000	\$ -	\$ -
2	\$ -	\$ 1,000,000	\$ 1,000,000
3	\$ -	\$ -	\$ -
4	\$ -	\$ 1,000,000	\$ 6,000,000
7	\$ -	\$ -	\$ -
8	\$ -	\$ -	\$ -
9	\$ -	\$ -	\$ -
Total	\$ 1,500,000	\$ 2,000,000	\$ 7,000,000

Project Name	Region	IRIS Number	HSIP Project Number	KSI	B/C	Criteria 1	Criteria 2	Criteria 3A	Criteria 3B	Criteria 4	Weighted Score	Statewide Rank	FFY 2026 Planned Obligation	FFY 2026 Cumulative Planned Obligation	Funding Category	Has Ph 2 & Meets Crit 3B	Quarter
CR Red Light Indicator Lights and Retroreflective Backplates	C	pend	26CR01	43	22	5	5	5	N/A	0	5	1	\$ 19,000	\$ 19,000	S148 or S154/S164	N/A	Q3
Regionwide Systemic Retroreflective Back Plates at Signalized Intersections	C	pend	26CR02	183	15.9	5	5	5	N/A	0	5	2	\$ 162,000	\$ 181,000	S148 or S154/S164	N/A	Q3
City of Fairbanks Systemic Signal Upgrades - Stage 2 (HSIP)	N	NFHwy01098	21NR02	6	1.05	5	4	N/A	5	0	4.65	3	\$ 5,860,000	\$ 6,041,000	S148 or S154/S164	\$ -	Q4
Seward Highway Safety Corridor Variable Speed Limit	C	NFHwy00949	25CR03	10	3.97	5	5	N/A	3	0	4.4	4	\$ 910,000	\$ 6,951,000	S148 or S154/S164	\$ 700,000.00	Q2
5th Ave: Concrete St to Karluk St Pedestrian Improvements	C	CFHwy00856	21CR01	2	2.39	4	5	N/A	4	0	4.35	5	\$ 3,867,000	\$ 10,818,000	VRU	\$ -	Q4
HSIP: City of Fairbanks Systemic Signal Upgrades	N	NFHwy00592	21NR02	6	1.05	5	4	N/A	4	0	4.35	6	\$ -	\$ 10,818,000	S148 or S154/S164	\$ -	-
Richardson Highway MP 341-362 Variable Speed Limit	N	NFHwy00949	24NR02	2	2.26	4	5	N/A	4	0	4.35	7	\$ 380,000	\$ 11,198,000	S148 or S154/S164	\$ 180,000.00	Q2
Tudor Road: Baxter Road to Patterson Street Channelization	C	CFHwy01073	23CR01	4	0.73	5	3	N/A	5	0	4.3	8	\$ 4,807,000	\$ 16,005,000	S148 or S154/S164	\$ -	Q2
Anchorage Flashing Yellow Arrow and Signal Head Display Improvements	C	CFHwy00944	22CR01	10	1.72	5	4	N/A	3	0	4.05	9	\$ 150,000	\$ 16,155,000	S148 or S154/S164	\$ -	Q2
Sterling Highway Shoulder Widening MP 157-169	C	Z581060000	14CR02	4	0.4	5	2	N/A	5	0	3.95	10	\$ 10,800,000	\$ 26,955,000	S148 or S154/S164	\$ -	Q1
Northern Lights Blvd Road Diet	C	CFHwy01318	25CR01	18	30	5	5	1	N/A	0	3.8	11	\$ 90,000	\$ 26,955,000	Not Selected	N/A	Q3
Ingra & Gambell Couplet Lane Reconfigurations	C	CFHwy01367	25CR02	28	13.5	5	5	1	N/A	0	3.8	12	\$ 1,160,000	\$ 26,955,000	Not Selected	N/A	Q2
A Street Road Diet	C	CFHwy01364	25CR05	8	4.9	5	5	1	N/A	0	3.8	13	\$ 632,000	\$ 26,955,000	Not Selected	N/A	Q4
Nordale Road / Peede Road Improvements (HSIP)	N	NFHwy00948	24NR01	1	2.46	3	5	N/A	3	0	3.7	14	\$ 388,400	\$ 27,343,400	S148 or S154/S164	\$ 188,400.00	Q3
Gambell St Utility Pole Removal and Increased Pedestrian Lighting	C	CFHwy00502	19CR01	5	0.3	5	2	N/A	4	0	3.65	15	\$ 7,000,000	\$ 27,343,400	Not Selected	\$ -	Q4
JNU Glacier Hwy Safety Improvements HSIP - McNugget to Loop Rd	S	SFHwy00498	23SR02	0	2.54	2	5	N/A	4	0	3.65	16	\$ 350,000	\$ 27,693,400	S148 or S154/S164	\$ 150,000.00	Q3
POW Rumble Strip Improvements	S	SFHwy00603	24SR01	1	0.61	3	3	N/A	5	0	3.6	17	\$ 1,821,000	\$ 29,514,400	S148 or S154/S164	\$ -	Q1
HSIP Southcoast Region Accessible Pedestrian Signal Pushbutton Upgrades	S	pend	26SN01	5	N/C	3	3	5	N/A	0	3.6	18	\$ 200,000	\$ 29,714,400	VRU	N/A	Q4
Bogard Rd at Engstrom Rd / Green Forest Dr Intersection Improvements	C	CFHwy00453	18CR01	1	0.61	3	3	N/A	5	0	3.6	19	\$ 15,278,000	\$ 44,992,400	S148 or S154/S164	\$ -	Q3
Mountain View Drive Safety Improvements	C	CFHwy01365	25CR06	5	0.6	5	3	N/A	2	0	3.4	20	\$ -	\$ 44,992,400	S148 or S154/S164	\$ -	-
Pittman Rd Shoulder Widening and Slope Flattening	C	CFHwy00926	22CR02	7	0.4	5	2	N/A	3	0	3.35	21	\$ 1,200,000	\$ 46,192,400	S148 or S154/S164	\$ -	Q3
HSIP Juneau Areawide Pedestrian Improvements	S	SFHwy00694	25SN03	2	N/C	3	3	N/A	4	0	3.3	22	\$ 95,000	\$ 46,287,400	VRU	\$ 95,000.00	Q2
Parks Highway/Sheep Creek Road Extension Traffic Signal (HSIP)	N	NFHwy00898	23NR01	1	0.66	3	2	N/A	5	0	3.25	23	\$ 9,896,578	\$ 56,183,978	S148 or S154/S164	\$ 470,000.00	Q1
HSIP: Northern Region Systemic Signal Upgrades	N	NFHwy00531	20NR02	0	0.51	2	3	N/A	5	0	3.25	24	\$ 1,620,213	\$ 57,804,191	S148 or S154/S164	\$ -	Q4
Wasilla-Fishhook Rd and Spruce Ave/Peck St Roundabout	C	CFHwy00790	20CR03	0	0.72	2	3	N/A	5	0	3.25	25	\$ 5,597,000	\$ 63,401,191	S148 or S154/S164	\$ -	Q1
Rural/Remote School Zone Safety Audit Project	H	HFHwy00402	24HN01	0	N/C	2	3	N/A	4	0	2.95	26	\$ -	\$ 63,401,191	SSP	\$ -	-
HSIP: Murphy Dome Road MP 0-2 Rehabilitation	N	NFHwy00818	23NR02	1	0.3	3	2	N/A	4	0	2.95	27	\$ 500,000	\$ 63,901,191	VRU	\$ -	Q1
Vine Rd at Hollywood Rd Intersection Improvements	C	CFHwy00463	18CR02	1	0.46	3	2	N/A	4	0	2.95	28	\$ -	\$ 63,901,191	S148 or S154/S164	\$ -	-
JNU Loop Road - Valley Boulevard Intersection Safety Improvements HSIP	S	SFHwy00403	22SR01	0	0.23	2	2	N/A	5	0	2.9	29	\$ 4,302,000	\$ 68,203,191	S148 or S154/S164	\$ -	Q1
Bogard Road: Greyling Street to Grumman Circle Safety Improvements	C	CFHwy01234	24CR01	4	0.21	5	2	N/A	1	0	2.75	30	\$ 1,106,400	\$ 69,309,591	S148 or S154/S164	\$ 1,106,400.00	Q4
Central Region FFY26-31 Fatal Crash Review Team and Rapid Response Fund	C	pend	26CN01	0	N/C	1	2	5	N/A	15	2.7	31	\$ 600,000	\$ 69,909,591	S148 or S154/S164	N/A	Q2
Parks Highway Guardrail End Terminal Upgrades	N	pend	26NN01	0	N/C	1	1	5	N/A	48	2.68	32	\$ 600,000	\$ 70,509,591	S148 or S154/S164	N/A	Q1
Bogard Road: Trunk Road to Engstrom Road Safety Improvements	C	CFHwy01234	24CR02	1	0.23	3	2	N/A	1	62	2.67	33	\$ 518,000	\$ 71,027,591	S148 or S154/S164	\$ 518,000.00	Q4
JNU Glacier Hwy Lighting Improvements (Jensine - Fritz Cove)	S	SFHwy00602	24SN01	0	N/C	1	1	N/A	4	76	2.66	34	\$ 200,000	\$ 71,227,591	S148 or S154/S164	\$ -	Q4
Douglas Highway Retaining Wall and Guardrail Installation	S	SFHwy00691	25SN01	0	N/C	1	1	N/A	4	75	2.65	35	\$ 30,000	\$ 71,257,591	S148 or S154/S164	\$ -	Q4
Harbor Drive Crosswalk and Lighting Improvements	S	SFHwy00690	25SN02	0	N/C	1	1	N/A	4	74	2.64	36	\$ 70,000	\$ 71,327,591	VRU	\$ 50,000.00	Q2
Northern Region Accessible Pedestrian Signal Upgrades (HSIP)	N	NFHwy01058	25NN01	0	N/C	1	1	N/A	4	73	2.63	37	\$ 70,000	\$ 71,397,591	VRU	\$ 70,000.00	Q2
SIT Halibut Point Road and Peterson Avenue Intersection Safety Improvements	S	SFHwy00103	17SN01	0	N/C	1	1	N/A	5	42	2.62	38	\$ 66,000	\$ 71,463,591	VRU	\$ -	Q1
Seward Highway Rockfall Mitigation, MP 113.2	C	CFHwy01239	19CN05(23)	0	N/C	1	1	N/A	4	71	2.61	39	\$ 400,800	\$ 71,864,391	S148 or S154/S164	\$ 400,800.00	Q1
SR Regionwide Passing Zones Inventory and Restriping HSIP	S	SFHwy00497	23SN01	0	N/C	1	2	N/A	5	6	2.61	40	\$ 1,479,084	\$ 73,343,475	S148 or S154/S164	\$ -	Q3
Airport Way Connected Corridor	H	pend	26HN01	0	N/C	1	1	5	N/A	40	2.6	41	\$ 1,500,000	\$ 74,843,475	S148 or S154/S164	N/A	Q2
Vision Zero Speed Limit Compliance	C	CFHwy01366	25CN01	0	N/C	1	3	N/A	1	90	2.6</						

Projects are funded in order of decreasing Statewide Rank until funds are exhausted.

Regions may optionally advance unfunded projects in accordance with Section 2.11.

All projects, whether obligations are planned for funding year or not, use the following Prioritization Criteria Matrix:

Criteria 1: HSIP Tunnel Vision - "Lives saved and major injuries eliminated..."

Criteria 2: HSIP Tunnel Vision - "... per dollar spent."

Criteria 3A: Prioritize starting projects with fewer elements acknowledged to delay HSIP project implementation, according to regional traffic sections. Score distribution designed to provide greater differentiation.

Criteria 3B: Prioritize projects for rapid delivery of safety improvements, but recognize quality results can take time.

Criteria 4: Scores greater than 0 added only with notes from State Traffic & Safety Engineer explaining use of the bonus score.

SCORE	Criteria 1 (70%)	Criteria 2 (70%)	Criteria 3A (30%)	Criteria 3B (30%)	Criteria 4 (Bonus!)
	Crashes	B/C Ratio	Project Deliverability (Only New or Unfunded Old Projects)	Project Duration (Only Funded Old Projects)	Program Manager's Discretion
5	Ranked Projects, 3 or more serious crashes	B/C > 2.0:1	Nominations with the least risk of schedule / scope creep: no ROW, Environmental = CatX, expected public input / resistance is negligible, and low probability of unforeseen outcomes.	Phase 4 obligations planned in the funding FFY and estimated construction completion by the end of the following FFY.	Scores greater than 0 added only with notes from State Traffic & Safety Engineer explaining use of the bonus score. Scoring is subjective.
4	Ranked Projects, at least 2 serious crashes	1.0:1 < B/C ≤ 2.0:1		Phase 4 obligations planned in the next FFY.	Scoring for this criteria is anticipated only for the following situations, but other situations may develop requiring the use of this category:
3	Ranked Projects with 1 serious crash OR Non-ranked Systemic Projects to meet nominal ATM Compliance Dates	0.5:1 < B/C ≤ 1.0:1 OR Non-ranked Systemic Projects that: 1) address risks for prominent crash types from the SHSP AND 2) have total project costs estimated less than or equal to 50% of available HSIP funding in the current year	Nominations with an expectation of schedule creep due to ROW, Environmental, public input / resistance, or other issues, but risks are foreseen and accepted.	Phase 4 obligation expected in 2 years.	1) Cost fitting: Raising priority just above available funding cutline. The funding cutline is established by the State Traffic & Safety Engineer in consult with Statewide Program Development. - All projects initially falling below the funding cut line are scored 0. - Project by Project, in order of ranking, the value under Criteria 4 is increased from 0 until the project rises above the cutline when sorted. - Process is repeated until no projects below the cutline fit the remaining funding gap. 2) Restrictive funding utilization: Identifying projects capable of using the program's most restrictive funding sources.
2	Ranked Projects with no serious crashes OR Non-ranked Projects with no serious crashes that: 1) address risks for prominent crash types from the SHSP AND 2) have total project costs estimated less than or equal to 50% of available HSIP funding in the current year	0.2:1 < B/C ≤ 0.5:1		Phase 4 obligation expected in 3 years.	
1	Non-ranked Projects with 1 or less serious crashes but either a predicted crash prevention solution approved though the State Traffic & Safety Engineer or an emphasis on injury patterns	B/C not predicted - Spot Improvements	Nominations with an undesired, unexpected schedule creep, could be ROW and Environmental additions.	Phase 4 obligation expected in 4 years or more.	

SHSP Prominent Crash Types:

Safe Road Users

Pedestrians, Bicyclists

Young Drivers, Older Drivers

Motorcycles, All-Purpose Vehicles (Off-Road Vehicles), Snowmachines

Impaired Driving, Occupant Protection

Safe Roads and Speeds

Intersections, Lane Departures, Roadway Departures

Speeding